15-110 Midterm \#1a - Fall 2018 50 minutes

Name:

Andrew ID: \qquad @andrew.cmu.edu

Section:

- You may not use any books, notes, or electronic devices during this exam.
- You may not ask questions about the exam except for language clarifications.
- Show your work on the exam (not scratch paper) to receive credit.
- If you use scratch paper, you must submit it with your andrew id on it, and we will ignore it.
- All code samples run without crashing. Assume any imports are already included as required.
- Do not use these post-midterm1 topics: strings, lists, etc.

DO NOT WRITE IN THIS AREA		
Part 1 (CT)	30 points	
Part 2 (Logic Circuits) (xnor)	10 points	
Part 3 (Very Short Answers)	20 points	
Part 4 (FR / CMU-A)	10 points	
Part 5 (FR / primeCount)	10 points	
Part 6 (FR / avgOfEvenDigits)	15 points	
Part 7/bonus	5 points bonus	
Total	95 points	
(Not on exam: Watch The Imitation Game)	5 points	

1. [$\mathbf{3 0}$ pts; $\mathbf{1 0}$ pts each] Code Tracing

Indicate what each will print. Place your answer in the boxes below each block of code. Show your work, outside the box, for partial credit.
def $\operatorname{ct1}(n)$:
$m=2 * n$
$\mathrm{d}=10$
while ($n<m$):
print($n, d)$
$\mathrm{n}+=\mathrm{d}$
d += 10
return n
print(ct1(40)) \# prints 7 values
\# on 4 lines
def ct2(lo, hi):
result = 0
for z in range(lo, hi):
if (z\%2 == 1):
print(z, result)
result += z\%10
return result

print(ct2(20,24)) \# prints 5 values
\# on 3 lines
def ct3(d, m):
for x in range(m):
for y in range (m) :
if ($x * y==d)$:
print(x, y)
print(ct3(5, 6)) \# prints 5 values
\# on 3 lines

2. [10 pts] Logic Circuits: xnor

The function xnor is the opposite of $x o r$. So (x xnor y) is True if both x and y are True, or neither x nor y are True. Also, (x xnor y) is False if exactly one of x or y is False.
A. [4pts] Write the Truth Table for (x xnor y)

Hint: the table should have 4 rows in it.
B. [3 pts] Write (x xnor y) in Disjunctive Normal Form (DNF, using only And, Or, and Not)
C. [3 pts] Draw a logic circuit that computes (x xnor y) using only And, Or, and Not gates, that matches your DNF expression from the previous step (2B). Each gate should be drawn as a rectangle with the word And, Or, or Not inside.

3. [20 pts; $\mathbf{2 . 5}$ pts each] Very Short Answers

Answer each of the following very briefly.
A. In just a few words, state one topic that the Blums discussed in their guest lecture.
B. Multiply 23 * 37 using lattice multiplication. Show your work.
C. In just a few words, state one important technical contribution Alan Turing made.
D. When we add two 1-bit values x and y, we get a 2-bit result. The high-order bit is (x and y). What logical function of x and y describes the low-order bit (the one's digit)?
E. In the number-guessing game from our case study, the user picks a number between 0 and 100, inclusive, and the computer guesses 50. If that is too low, what will the next guess be? Show your work.
F. In just a few words, state a winning algorithm for the game of Nim.
G. In just a few words, why did we switch from ascii to unicode?
H. Multiply 9 * 6 using Egyptian Multiplication. Show your work.

4. [10 pts] Free Response: CMU-A

Using the CS Academy drawing functions, draw this image:

Notes:

* all numbers in your code should be either a single digit or a multiple of 100
* all colors are black or white
* the outer 400×400 rectangle is the canvas border, and not part of the drawing

5. [10 pts] Free Response: primeCount

Note: for this problem, assume you already have the function isPrime(n) that returns True if n is prime and False otherwise. Do not write isPrime(n) here!

Using the isPrime (n) function, write the function primeCount(n) that takes a possibly-negative integer n and returns the number of primes up to n, inclusive.

Note that the first several primes are: $2,3,5$. So:
primeCount(1) returns 0
primeCount(2) returns 1
primeCount(3) returns 2
primeCount(4) returns 2
primeCount(5) returns 3

Also, since there are no primes smaller than 2, primeCount(-10) returns 0.
6. [15 pts] Free Response: averageOfEvenDigits

Without using strings, write the function averageOfEvenDigits(n) that takes an integer n and returns the average of the even digits in n. Here are some sample test cases for you:

```
assert(averageOfEvenDigits(12345) == 3) # (2+4)/2 == 6/2 == 3
assert(averageOfEvenDigits(102201) == 1) # (0+2+2+0)/4 == 4/4 == 1
assert(averageOfEvenDigits(1) == None) # no even digits --> None
assert(averageOfEvenDigits(0) == 0) # handle 0!
assert(averageOfEvenDigits(-2) == 2) # handle negatives!
```

Reminder: do not use strings.
7. Bonus/Optional: [2.5 pts] What will this print? Clearly circle your answer.

```
def bonusCt1(n):
    a \(=\mathrm{n} \% 10\)
    b \(=n / / 10 \% 10\)
    n //= 100
    \(\mathrm{m}=0\)
    while ( \(n>0\) ):
        d \(=\mathrm{n} \% 10\)
        n //= 10
        if ((d > a) and (b > d)):
                \(m=10 * m+d\)
    return \(m\)
bigNumber = 26999500079469942999000081
print(bonusCt1(bigNumber))
print(bonusCt1(bonusCt1(bigNumber)))
```

Bonus/Optional: [2.5 pts] What will this print? Clearly circle your answer.

```
def bonusCt2(n):
    result = 0
    sign = 1
    for i in range(n):
        for j in range(i+1):
            result += sign * j
            sign = -sign
    return result
for i in range(100):
    k = bonusCt2(i)
    if (abs(k)//2 == 10):
        print(i, k)
```

