
15-110 Midterm #2a – Fall 2018
50 minutes

Name: ______________________________

Andrew ID: _______________@andrew.cmu.edu

Section: _______

• You	may	not	use	any	books,	notes,	or	electronic	devices	during	this	exam.		

• You	may	not	ask	questions	about	the	exam	except	for	language	clarifications.	

• Show	your	work	on	the	exam	(not	scratch	paper)	to	receive	credit.
• If	you	use	scratch	paper,	you	must	submit	it	with	your	andrew	id	on	it,	and	we	will	ignore	it.	
• All	code	samples	run	without	crashing.		Assume	any	imports	are	already	included	as	required.
• Do	not	use	these	post-midterm2	topics:		recursion,	etc.

DO NOT WRITE IN THIS AREA

Part 1 (Very Short Answers) 25 points

Part 2 (CT) 30 points

Part 3 (FR / checkKalado) 15 points

Part 4 (FR / maxDataValue) 10 points

Part 5 (FR / coin flips) 20 points

Part 6/bonus 5 points bonus

 Total	 100 points

	

1. 	[25	pts;	2.5	pts	each]	Very	Short	Answers	
Answer	each	of	the	following	very	briefly.	
	
	

1)	About	how	many	passes	does	mergesort	require	to	sort	a	list	of	N	numbers?	
	
	
	
	

2)	About	how	many	total	steps	(not	just	passes)	does	selectionsort	require	to	sort	a	list	of	N	numbers?	
	
	
	
	

3)	What	general	topic	did	David	Danks	discuss	in	his	guest	lecture?	
	
	
	
	

4)	If	M	is	a	list	of	length	10,	this	line	works	just	fine:	
									M[3]	=	'x'	
But	if	M	is	a	string	of	length	10,	that	same	line	will	crash.		Why?	
	
	
	
	
	
	

5)	What	general	topic	did	Jesse	Schell	discuss	in	his	guest	lecture?	
	
	
	

	 	

6)	In	all	our	Monte	Carlo	examples,	what	do	we	have	to	do	to	get	a	more	accurate	result?	
	
	
	
	
	

7)	If	a	function	f(L)	takes	a	1d	list	L	and	always	returns	None,	which	seems	more	likely:		that	f	is	
destructive	or	non-destructive?	
	
	
	
	
	

8)	What	general	topic	did	Lorrie	Cranor	discuss	in	her	guest	lecture?	
	
	
	
	
	

9)	What	can	you	do	faster	with	a	set	of	N	unique	numbers	than	with	a	list	of	the	same	N	numbers?	
	
	
	
	
	
	

10)	What	can	you	do	with	a	list	of	N	unique	numbers	that	you	cannot	do	with	a	set	of	the	same	N	
numbers?	
	
	 	

2. [30	pts;	10	pts	each]	Code	Tracing	
Indicate	what	each	will	print.	Place	your	answer	in	the	boxes	below	each	block	of	code.		Show	your	
work,	outside	the	box,	for	partial	credit.	
	
	

def	ct1(L):	
				M	=	[]	
				n	=	len(L)	
				for	k	in	range(n):	
								M.append(L[k][n-1-k])	
								if	(k%2	==	0):	
												M[-1]	*=	-1	
				return	M	
	
print(ct1([[1,	2,	3],	[4,	5,	6],	[7,	8,	9]]))	

	
	
	
	

	
	

	 	

def	ct2(d):	
				s	=	set()	
				t	=	set()	
				for	key	in	d:	
								value	=	d[key]	
								if	(value	in	s):	
												t.add(value)	
								s.add(value)	
				return	sorted(t)	
	
print(ct2({1:5,	2:3,	5:3,	4:5,	7:5,	6:4}))	

	
	
	
	

	

	
	
	

def	ct3(n):	
				x	=	0	
				y	=	0	
				for	i	in	range(n):	
								try:	
												d	=	i%10	
												if	(1/d	>	0):	
																x	+=	1	
								except:	
												y	+=	1	
				return	[x,	y]	
print(ct3(25))	

	
	
	
	

	

	
	 	

3. 	[15	pts]	Free	Response:		checkKalado(L)	
Here,	we	will	invent	the	game	Kalado,	which	is	a	simplified	variant	of	Kaladont.		In	Kalado,	each	
word	has	to	have	at	least	one	letter,	and	each	word	(except	the	first	word)	has	to	start	with	the	last	
character	of	the	previous	word,	without	regard	to	case	(so	'A'	and	'a'	match).			With	this	in	mind,	
write	the	function	checkKalado(L)	that	takes	a	list	of	words	L,	and	returns	True	if	it	is	a	legal	Kalado	
list,	and	False	otherwise.	
	
Notes:	
		*	If	the	list	does	not	have	at	least	2	words,	then	it's	not	a	legal	Kalado	list.	
		*	If	any	word	has	no	characters,	then	it's	not	a	legal	Kalado	list.	
	
Here	are	some	sample	test	cases:	
				assert(checkKalado(['ab',	'bc',	'cda',	'ab'])	==	True)	
				assert(checkKalado(['ab',	'bc',	'ab'])	==	False)	
				assert(checkKalado(['AB',	'bc'])	==	True)	
				assert(checkKalado(['AB',	''])	==	False)	
				assert(checkKalado(['AB'])	==	False)	
	
	

	 	

4. [10	pts]	Free	Response:		maxDataValue(path)	
	
For	this	exercise,	you	may	assume	the	CSV	files	will	contain	one	header	row,	followed	by	rows	that	
only	contain	comma-separated	integers.	You	may	also	assume	every	CSV	file	contains	at	least	one	
row	and	one	column	of	data	values.		With	that	in	mind,	write	the	function	maxDataValue(path)	that	
takes	a	path	to	a	CSV	file,	and	returns	the	largest	value	that	occurs	in	the	data.	
	
Hint:	you	will	want	to	call	readCsvFile(path)	(which	you	do	not	have	to	write!).	Remember:	
readCsvFile(path)	takes	a	path	and	returns	the	data	in	that	csv	file	as	a	2d	list.	
	
	
	
	

5. [20	pts]	Free	Response:		coin	flips	
	
Write	these	two	functions:	
	
oddsOfAllSameFlips(n,	trials)	
	
This	function	takes	two	integers,	n	and	trials,	both	of	which	you	may	assume	to	be	positive,	and	
uses	Monte	Carlo	techniques	to	compute	and	return	the	odds	that	if	you	flip	a	coin	n	times	you'll	
either	get	n	heads	or	n	tails.	So	oddsOfAllSameFlips(3,	100)	would	run	100	trials	to	find	the	odds	
that	3	coin	flips	would	result	in	either	3	heads	or	3	tails.	
	
trialSucceeds(n)	
	
This	is	a	helper	function	you	need	to	write	that	runs	a	single	trial	using	n	coin	flips.	You	should	call	
this	helper	function	in	oddsOfAllSameFlips	(the	other	function	you	are	writing	here).	
	
Notes:	
*	You	may	assume	flipCoin()	is	written	for	you,	and	randomly	returns	'H'	or	'T'	
*	You	must	use	Monte	Carlo	techniques	to	receive	any	credit	here,	even	if	you	know	how	to	
compute	the	answer	directly	some	other	way.	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																									[You	may	use	the	next	page	for	this	question]

																																																				[This	page	intentionally	blank]	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																																				[Exam	continues	on	next	page]	
	

6. Bonus/Optional:		[5	pts,	2.5	pts	each]		What	will	this	print?		Clearly	circle	your	answer.	
	
	
def	bonusCt1(n):	
				s	=	''	
				for	i	in	range(1,n):	
								try:	s	+=	str(float(1/i))[i]	
								except:	s	+=	'1'	
				return	n+float(s)	
print(bonusCt1(5))	
	
	
	
	
	
	
	
def	bonusCt2(L):	
				while	(len(L)<10):	
								for	i	in	range(L[-2]):	
												L.append(sum(L)%100)	
				return	L[-L[0]]	
print(bonusCt2([1,2,3]))	

