$\qquad$
$\qquad$
$\qquad$

## 15-110 Fall 2018 Quiz 3

* 20 minutes
* No calculators, no notes, no books, no computers.
* Show your work when possible!

1. Code Tracing [10 pts] Indicate what the following program prints. Place your answer in the box.
```
def f(m, n):
    j = 0
    k = 0
    for x in range(m, n):
            j += x
            k += 2
    return j*k
print(f(2,4))
return \(\mathrm{j}^{*} \mathrm{k}\)
print(f(2,4))
```

2. Code Tracing [10 pts] Indicate what the following program prints. Place your answer in the box.
$\square$

```
def f(z):
```

def f(z):
m = 0
m = 0
while (m < z):
while (m < z):
m = (m + 1)*2
m = (m + 1)*2
return m-z
return m-z
print(f(8) + f(-8))

```
print(f(8) + f(-8))
```


## 4. Very Short Answers [ 20 pts; 5 pts each]

a. In just a single word, what component of sand makes it useful for building computers?
b. When we add two 1-bit values $x$ and $y$, the result is a two-bit value. The ones-digit (low-order bit) of the result is ( x xor y ). Write a similar logical function for the twos-digit (high-order bit) of the result.
c. Fill in the blank from the notes: "Any logical function can be written in Disjunctive Normal Form (DNF)... So, critically, given an arbitrary logical function, we only need $\qquad$ gates to build a machine that computes it."
d. In the number-guessing game from our case study, the user picks a number between 0 and 100 , inclusive, and the computer guesses 50 . If that is too high, its next guess is 24 . Very briefly, but precisely, why is that guess 24 and not 25 ?

## 5. Free Response: hasAllOddDigits( $\mathbf{n}$ ) [ 40 pts ]

Write the function hasAllOddDigits( $n$ ) that takes an integer $n$ and returns True if all the digits in $n$ are odd and False otherwise. So hasAllOddDigits(1331759) returns True and hasAllOddDigits(1331659) returns False. Note: do not use strings in your solution!

## 6. Bonus/Optional: Code Tracing [2.5 pts each]:

Indicate what each of the following programs prints. Clearly circle your answers (and nothing else).

```
# Bonus CT2:
def ct1(x, y):
    while (x < y):
        for z in range(2+x):
            x += z
    return x
print(1+ct1(2,ct1(1,2)))
```

```
# Bonus CT2:
def ct2(n):
    s = '1'*100
    while (int(s,2) > n):
        s = s[1:-1]
    return n + int(s, 2)
print(ct2(35))
```

