
Computer Science 15-111 (Sections A & B), Spring 2007

Class Notes: 02-Apr-2007
Logistics:

1. Quiz 6 is Wednesday
Covers material through last Friday (including JCF, with today’s JCF redux)

2. Reading on Trees:
a. Wikipedia entries on:

i. Trees
ii. Binary Trees
iii. Binary Search Trees
b. Javanotes: Section 9.4

i. 9.4.0. Binary Trees

ii. 9.4.1. Binary Tree Traversals

iii. 9.4.2. Binary Sort Trees (we call them Binary Search Trees)

iv. 9.4.3. Expression Trees

c. Dr. Kesden’s class notes:

i. Expression Trees
ii. BST’s introduction
iii. BST coding
iv. BST coding practice
Topics:

1. JCF Redux (for Wednesday’s Quiz)

a. A bit more on Maps
i. Map interface
1. Map: An object that maps keys to values.

ii. HashMap
1. Map backed by a hash table.
2. Constant-time get, put (assuming a good hash function)
3. Unordered (and order can change over time)
4. Instances have two parameters affecting performance
a. Initial Capacity
b. Load Factor
i. Rehash when (# of elements) > (capacity) x (load factor)
iii. SortedMap interface
1. A map that further guarantees that its iterator will traverse the map in ascending key order
a. Natural order defined by Comparable; or
b. By a Comparator provided when the map is first created.
iv. TreeMap
1. SortedMap backed by a (red-black) tree
a. Self-balancing binary search tree
b. See Wikipedia entry on Red-Black Trees
(Though you need not know much about them, at least not yet, beyond what is mentioned here.)
2. O(logn)-time containsKey, get, put and remove

b. Collections class

c. Arrays class

2. Tree Definitions
a. Tree
[image: image1.jpg]

b. Nodes

i. With and (more typically) without Parent Pointers

c. Values

d. Duplicate Values

i. Set (no duplicates)

ii. Multiset (duplicates)

e. Child Node
f. Parent Node
g. Root Node
h. Sibling Node
i. Ancestor Node
j. Descendant Node
k. Leaf Node
l. Internal or Inner (Non-Leaf) Node
m. Node Depth
n. Tree Depth or Tree Height
o. Subtree
p. Proper Subtree
q. Traversal or Walk
i. Preorder Traversal
ii. Inorder Traversal
iii. Postorder Traversal
r. Balanced Tree

s. Full Tree

t. Complete Tree

u. Perfect Tree

v. Binary Tree

w. Binary Search Tree (BST)
[image: image3.png]

x. Expression Tree
[image: image4.png]

y. Parse Tree

z. Heap (A Complete, Partially-Ordered Binary Tree)

3. BST Storage

a. Linked Nodes

b. Array

4. BST Algorithms
a. Searching
Iterate down appropriate path.
b. Insertion
Iterate down appropriate path to leaf. Add new leaf.
c. Deletion
i. Deleting a leaf
Easy.

ii. Deleting a node with one child
Delete it and replace it with its child.

iii. Deleting a node with two children
Replace node with either:
1. in-order successor; or
2. in-order predecessor

