Computer Science 15-111 (Sections A & B), Spring 2007

Class Notes: 17-Jan-2007
Course Web Site, Syllabus, etc:
These should be online by tomorrow. We will review them in recitation, where you will also receive the programming portion of Homework #2, which is due Monday.
My contact info:
Email me at koz@cmu.edu. My office is Doherty 4301-D (most easily found from Wean 8th floor passage into Doherty). Office hours are right after each class (including today).
Textbook:
For the first 1/3rd or so of the course, we will use an online textbook:

Java by Dissection, 2nd Edition, by Ira Pohl and Charlie McDowell

Download the pdf for $5 (you may also buy the printed book for about $20) at:

http://www.lulu.com/content/267149
You can find all the example code online at:

http://www.soe.ucsc.edu/~charlie/java/jbd/
Reading:
On Monday, we covered Chapter 1 (Introduction). This lecture, we are covering:

Chapter 2: Program Fundamentals

Appendix A.1: Integer Binary Representation

Appendix B.1: Operator Precedence Table (portions thereof)
Quiz:
Our first quiz, covering Chapters 1-3 and Appendices A-B, is on Wednesday 24-Jan (note: we are moving quickly as this is mostly material you should have seen already).

Topic Outline:

1. Lexical Elements
White space, comments, keywords, identifiers, literals, operators, punctuation

	literal
	Value

	32
	decimal 32

	032 (octal)
	decimal 26 (3*8 + 2)

	0x32 (hexadecimal)
	decimal 50 (3*16 + 2)

	132l
	132 as a long

	1.32f
	1.32 as a float

	1.32d
	1.32 as a double

	1.32
	1.32 as a double (default)

	2.17e-32
	2.17 x 10-32

	‘a’
	The character ‘a’ (ASCII 97)

	“a”
	The String “a”

2. Primitive Data Types (8)
byte, short, int, long, float, double, char, boolean

	Type
	Bits
	Min
	Max

	byte
	8
	-128
	127

	short
	16
	-32768
	32767

	char
	16
	0
	65536

	Int
	32
	-2147483648
	2147483647

	long
	64
	About -9.2 x 1018
	About 9.2 x 1018

	Type
	Bits
	Approximate Range
	Approximate Precision

	float
	32
	+-10-45 to +-10+38
	7 decimal digits

	double
	64
	+-10-324 to +-10+308
	15 decimal digits

3. User Input (Section 2.6)

Scanner (see: http://java.sun.com/j2se/1.5.0/docs/api/java/util/Scanner.html)
import, assert and AssertionException
Problems with sample code: no comments, throws exceptions, terrible UI

4. printf

%c
character
%d
decimal integer

%e
floating-point number in scientific notation

%f
floating-point number

%g
the shorter of e-format or f-format

%s
string
	Code
	Output

	System.out.printf("<%6.2f>",13.579);
	< 13.58>

	System.out.printf("%c",65);
	A

	System.out.printf(“%d”,3.2)
	Runtime exception!

	System.out.printf("%f",67);
	Runtime exception!

5. ASCII codes you need to know:
0
null (in some OS’s signifies end-of-file)

7
alert/bell (it really rings!)

9
tab

10
linefeed

13
carriage return
32
‘ ‘ (space)
48
‘0’

…

57
‘9’
65
‘A’

…

90
‘Z’
97
‘a’

…

122
‘z’

6. Mixed mode arithmetic
a. Java arithmetic uses only int, long, float, double (not char, byte, short)

b. Java uses numeric promotion (a kind of widening conversion) to make both arguments the same type
c. Widening conversions are rarely lossy, but can be

eg: System.out.println((int)(float)123456789); (123456792
d. Narrowing conversions only by explicit casting. These often are lossy.

7. Arithmetic Errors

a. Overflow is unchecked! (results in gibberish)
b. Underflow is unchecked! (results in 0)

c. Floating point has no errors, just +Inf, -Inf, and NaN
d. Floating point is approximate, so don’t use ==

	Code
	Output

	System.out.println(0/0);
	Runtime exception!

	System.out.println(0f/0);
	NaN

	System.out.println((1.3 * (1.8 / 1.3)) == 1.8);
	true

	System.out.println(((1.3 * 1.8) / 1.3) == 1.8);
	false

8. Division operator (/)

Important: Integer division truncates, it does not round! (eg, 7 / 4 == 1, not 2)

9. Modulus operator (%)
a. Integers: remainder (eg, 23 % 7 == 2)
b. The textbook is wrong about floating-point modulus!!! Don’t worry, though, since nobody uses it (and neither should you, at least not without a really wonderful comment in your code!!!).

10. Operator precedence and associativity

	Operator
	Associativity

	() ++ (postfix) -- (postfix)
	left-to-right

	+ (unary) - (unary) ++ (prefix) -- (prefix)
	right-to-left

	new
	right-to-left

	* / %
	left-to-right

	+ -
	left-to-right

	= += -= *= /= …
	right-to-left

 Hint: When in doubt, use parentheses!!!

11. Two’s Complement

a. To negate: flip bits and add 1

b. So subtraction is addition (less silicon!), and no +-0.

12. Base conversions (time permitting)

You should be comfortable converting from and to binary, octal, decimal, and
hexadecimal, and doing so without a calculator.
