
Computer Science 15-111 (Sections A & B), Spring 2007

Class Notes: 30-Mar-2007
Logistics:

1. Today is the 2/3rds mark: You have run over 17 miles in this marathon. Keep in stride!

2. hw7 changes:

a. No overlapping hw8.

b. Small (but important) bonus added.

3. Yet-Another-Reminder: Study StackByInheritance.java
a. know how to create your own interfaces, exceptions, and parameterized classes.
4. Reading (online API’s)

a. Java Collections Framework
b. Iterable interface
c. Collection interface
d. List interface
e. Set interface
f. SortedSet interface
g. Map interface
h. SortedMap interface
i. Iterator interface
j. ListIterator interface
k. RandomAccess interface
l. Serializable interface
m. Cloneable interface
n. ArrayList
o. Vector
p. LinkedList
q. Stack
r. Queue interface (as LinkedList)
s. HashSet
t. HashMap
u. TreeSet
v. TreeMap
w. Collections class
x. Arrays class
Topics:

1. Java Collections Framework
a. Definitions
i. Collection = “an object that represents a group of objects.”
ii. Collection framework = “a unified architecture for representing and manipulating collections, allowing them to be manipulated independently of the details of their representation.”

b. Advantages of a Collections Framework:
i. Reduces programming effort
ii. Increases performance
iii. Provides interoperability
iv. Reduces effort to learn API’s
v. Reduces effort to design and implement API’s
vi. Fosters software reuse

c. The Java Collections Framework consists of:
i. Collection interfaces
ii. Collection implementations
1. General-purpose
2. Legacy (Vector, Hashtable)
3. Special-purpose
4. Concurrent
5. Wrapper (such as for synchronization)
6. Convenience
7. Abstract (partial implementations)
iii. Algorithms (such as sorting a list)
iv. Infrastructure (such as iterator interfaces, and the RandomAccess interface)
v. Array Utilities

d. Collection Interfaces properties
i. Immutable / Unmodifiable (we will not distinguish these cases)
ii. Fixed-size or variable-sized
iii. Random-access or Sequential-access
iv. Element restrictions
1. Be of a particular type.

2. Be non-null.

3. Obey some arbitrary predicate.

e. Design Goals
i. Keep API small in size and “conceptual weight”
ii. Complement existing API’s
iii. Yet be powerful
iv. General API with optional methods
v. To keep it small, only include a method if either:
1. It is truly a “fundamental operation” or
2. There is a compelling performance reason why an important implementation would want to override it.
vi. Arrays
1. Cannot implement Collection interface without changing the language
2. Thus, include methods to:
a. Convert Collections into Arrays
b. View Arrays as Collections

f. General-Purpose Implementations
i. Support all optional operations
ii. Have no restrictions on elements
iii. Are unsynchronized (but can be used with synchronization wrappers)
Set s = Collections.synchronizedSet(new HashSet(...));

	
	Implementations

	
	Hash Table
	Resizable Array
	Balanced Tree
	Linked List
	Hash Table + Linked List

	Interfaces
	Set
	HashSet
	
	TreeSet
	
	LinkedHashSet

	
	List
	
	ArrayList
	
	LinkedList
	

	
	Map
	HashMap
	
	TreeMap
	
	LinkedHashMap

2. In brief…

a. Iterable interface
b. Collection interface
c. List interface
d. Iterator interface
e. ListIterator interface
f. RandomAccess interface
g. Serializable interface
h. Cloneable interface
i. ArrayList
j. Vector
k. LinkedList
l. Stack
m. Queue interface (as LinkedList)

3. Sets
a. Set interface
i. A collection with no duplicate elements
ii. Behavior is undefined if elements are mutable
iii. A Java set may not contain itself
1. Aside: no worries about Russell’s Paradox
b. HashSet
i. Set backed by a HashMap (see below)
ii. Constant-time add, remove, contains (assuming a good hash function)
iii. Unordered (and order can change over time)
c. SortedSet interface
i. A set that further guarantees that its iterator will traverse the set in ascending element order
1. Natural order defined by Comparable; or
2. By a Comparator provided when the set is first created.
d. TreeSet
i. SortedSet backed by a TreeMap (see below)
ii. O(logn)-time add, remove, contains
iii. Stored in ascending order
4. Maps
a. Map interface
i. Map: An object that maps keys to values.

ii. A map cannot contain duplicate keys

iii. Each key can map to at most one value.
iv. Provides collection views over

1. keySet(): A set of keys,

2. values(): A collection of values, or

3. entrySet(): A set of key-value mappings.

v. Behavior is undefined if keys are mutable
vi. A Java map may not contain itself as a key
vii. But a Java map may contain itself as a value, but this is cautioned against.
b. HashMap
i. Map backed by a hash table.
ii. Constant-time get, put (assuming a good hash function)
iii. Unordered (and order can change over time)
iv. Instances have two parameters affecting performance
1. Initial Capacity
2. Load Factor
a. Rehash when (# of elements) > (capacity) x (load factor)
c. SortedMap interface
i. A map that further guarantees that its iterator will traverse the map in ascending key order
1. Natural order defined by Comparable; or
2. By a Comparator provided when the map is first created.
d. TreeMap
i. SortedMap backed by a (red-black) tree
1. Self-balancing binary search tree
2. See Wikipedia entry on Red-Black Trees
(Though you need not know much about them, at least not yet, beyond what is mentioned here.)
ii. O(logn)-time containsKey, get, put and remove

5. Collections class

6. Arrays class

