
15-112 Midterm #1a – Spring 2017
80 minutes

Name: ______________________________

Andrew ID: _______________@andrew.cmu.edu

Section: _______

• You	may	not	use	any	books,	notes,	or	electronic	devices	during	this	exam.		

• You	may	not	ask	questions	about	the	exam	except	for	language	clarifications.	

• Show	your	work	on	the	exam	(not	scratch	paper)	to	receive	credit.
• If	you	use	scratch	paper,	you	must	submit	it	with	your	andrew	id	on	it,	and	we	will	ignore	it.	
• All	code	samples	run	without	crashing.		Assume	any	imports	are	already	included	as	required.
• Do	not	use	these	post-midterm1	topics/constructs:	sets,	maps,	recursion,	or	classes/OOP.

DO NOT WRITE IN THIS AREA

Part 1 (CT) 15 points

Part 2 (RC) 10 points

Part 3 (SA) 10 points

Part 4 (FR / squarish) 20 points

Part 5 (FR / getCowMove) 20 points

Part 6 (FR / squareClick) 25 points

Part 7/bonus 5 points bonus

Total 100 points

	

1. 	[15	pts]	Code	Tracing	
Indicate	what	each	will	print.	Place	your	answer	in	the	boxes	below	each	block	of	code.	
	
def	ct1(a):	
				L,	M,	N	=	a,	copy.copy(a),	copy.deepcopy(a)	
				L[0][0]	+=	2	
				M[1]	+=	[3]	
				M[1]	=	M[1]	+	[4]	
				N[1]	=	L[0]	
				N[1][0]	=	N[1][0]	+	5	
				return	(M,	N)	
L	=	[[1],	[]]	
M,	N	=	ct1(L)	
for	A	in	[L,M,N]:	print(A)	#	prints	7	int	values	
																											#	(be	careful	with	your	brackets	and	newlines)	
	

	
	
	
	
	

	
	
	
	
	
	
def	ct2(s,	t):	
				r	=	''	
				for	c	in	s.upper():	
								if	(c	in	t):	
												r	+=	c	
												i	=	t.find(c)	
												t	=	t[:i]	+	t[i+1:]	
								else:	
												t	=	t.replace(t[0],	chr(ord(c)+3))	
				return	t+'x'+r	
print(ct2('aDge',	'bCDEfE'))	#	prints	a	7-letter	string	
	 	
	 	
	 	
	

	

	

#	Code	Tracing,	continued	
	
def	ct3(a):	
				L,	M,	n	=	[],	[],	len(a)	
				for	val	in	a[n-1	:	0	:	-2]:	
								L.append(val	%	10)	
								M	+=	[int(str(val)[0])]	
								if	(sum(M)	>	3):	
										L.append(M.pop(0))	
				return	L	+	M	
print(ct3(list(range(17,	23))))	#	prints	a	list	with	6	int	values	
	 	
	 	
	 	
	
	
	
	
	
	

2. [10	pts]	Reasoning	about	code	
For	each	function,	find	values	of	the	parameters	so	that	the	function	will	return	True.		Place	your	
answers	in	the	box	on	the	right	of	each	function.	
	

	
def	rc1(n):	
				assert(isinstance(n,	int))	
				L,	M	=	[],	[]	
				while	(n	>	0):	
								L.append(n%10)	
								M.insert(0,	n//10%10)	
								n	//=	100	
				n	=	int(''.join([str(v)	for	v	in	M]))	
				return	((sorted(L+M)	==	list(range(8)))	and	
												(n	==	256))	
	
	
	

	
	
	
n	=	______________________	
	

	
	
	
	

	

	
def	rc2(s):	
				assert(isinstance(s,	str))	
				c,	L	=	'B',	[]	
				for	d	in	s:	
								L.append(ord(d)	-	ord(c))	
								c	=	d	
				L	=	[L[i]*10**i	for	i	in	range(len(L))]	
				return	(123	==	sum(L))	
	

	
	
	
	
s	=	_______________________	
	
	

	
	
	
	
	

3. [10	pts]	Short	Answer	
Answer	each	of	the	following	very	briefly.	

A)	Since	int(True)	is	1	and	int(False)	is	0,	and	bool(1)	is	True	and	bool(0)	is	False,	we	can	define	the	
following	function:	
				def	And(b1,	b2):	return	bool(int(b1)*int(b2))	
This	almost	works,	but	not	quite.		In	some	cases,	given	booleans	b1	and	b2,	And(b1,	b2)	will	not	work	
exactly	like	(b1	and	b2).		Why	not?		
	
	
	

B)	Give	an	example	of	a	common	MVC	violation	--	that	is,	something	that	is	explicitly	disallowed	by	the	
rules	for	Model-View-Controller	applications.	
	
	
	
	
C)	Draw	a	picture	that	clearly	shows	where	the	anchor	is	located		when	drawing	the	text	"ABC"	in	
Tkinter	with	an	anchor	of	S.	
	

Short	Answers	(continued)	
	
D)	Fill	in	the	blanks	(according	to	our	case	study):	
	
def	sieve(n):	
				isPrime	=	[True]	*	(n+1)	
				isPrime[0]	=	isPrime[1]	=	False	
				primes	=	[]	
				for	prime	in	range(n+1):	
	
								if	(__):	
												primes.append(prime)	
												for	multiple	in	range(2*prime,	n+1,	prime):	

				return	primes	
	
	
	
E)	Fill	in	the	blanks	(according	to	our	case	study):	
	
def	selectionSort(a):	
				n	=	len(a)	
				for	startIndex	in	range(n):	
	
								minIndex	=	___	
								for	i	in	range(startIndex+1,	n):	
	
												if	(__):	
																minIndex	=	i	
								swap(a,	startIndex,	minIndex)	
	
	
	

4. [20	pts]	Free	Response:		isSquarish(n)	and	nthSquarish(n)	
Note:	for	full	credit,	you	may	not	use	strings	or	lists	for	this	problem.	For	a	5-pt	deduction,	you	may	
use	strings	and/or	lists.	
	
An	integer	m	is	squarish	(a	coined	term)	if	and	only	if:	
		1)	m	is	positive,	and	
		2)	m	has	at	least	three	digits,	and	
		3)	m	contains	no	0's,	and	
		4)	each	pair	of	consecutive	digits	in	m	are	within	2,	inclusive,	of	a	perfect	square.	
	
For	example,	if	m	==	6251.	
		*	62	is	within	2	of	64	
		*	25	is	within	2	of	25	
		*	51	is	within	2	of	49	
So	6251	is	squarish.		The	first	several	squarish	numbers	are:	
					111,	114,	115,	116,	117,	118,	147,	148,	149,	151,	162,	163,	164,	165,	166,	179,	
					181,	182,	183,	234,	235,	...	
	
With	this	in	mind,	write	the	functions	isSquarish(n)	that	takes	an	integer	value	n	and	returns	True	if	
it	squarish,	and	False	otherwise,	and	also	write	the	function	nthSquarish(n),	that	takes	a	non-
negative	int	n	and	returns	the	nth	squarish	number.	

																																		[this	page	is	blank	(for	isSquarish	and	nthSquarish]	

5. [20	pts]		Free	Response:		getCowMove	
Background:	this	problem	involves	a	simple	game	where	a	cow	moves	on	a	2d	board	trying	to	get	
food.		We	represent	the	board	as	a	rectangular	2d	list	of	integers,	where	0	is	empty,	1	is	the	cow,	
and	2	is	food.		There	is	always	exactly	one	cow	on	the	board,	and	always	several	cells	containing	
food.		On	each	step,	the	cow	can	only	move	'up',	'down',	'left',	or	'right',	though	the	cow	must	stay	
on	the	board	at	all	times.		Distances	from	the	cow	to	its	food	are	measured	in	the	number	of	steps	
required	to	reach	that	food	(which	is	different	than	using	the	distance	formula).		When	the	cow	
moves,	it	always	takes	one	step	towards	the	nearest	food	(with	ties	resolved	any	way	you	wish),	so	
after	that	step	it	is	one	step	closer	to	that	food.	
	
With	this	in	mind,	write	the	function	getCowMove(board)	that	takes	a	board	as	described	above	
and	returns	the	direction	the	cow	should	move	in	next,	according	to	the	rules	described	above.	
	
For	example,	say:	
			board	=	[[0,	0,	0,	0,	0,	0,	0,	0],	
													[0,	0,	1,	0,	0,	2,	0,	0],	
													[2,	0,	0,	0,	0,	0,	0,	0],	
													[0,	0,	0,	0,	0,	0,	0,	2]	
]	
We	see	that	the	cow	is	at	(1,2)	and	food	is	at	each	of	(1,5),	(2,0),	and	(3,7).	We	check	the	distances	
to	each	food:	
			(1,5)	is	3	from	(1,2)	
			(2,0)	is	3	from	(1,2)	
			(3,7)	is	7	from	(1,2)	
So	the	cow	can	move	towards	either	(1,5)	or	(2,0).		We	can	choose	either	one.	If	we	choose	(1,5),	
the	cow	must	move	'right'.	However,	if	we	choose	(2,0),	then	the	cow	can	move	either	'left'	or	
'down'.		Thus,	for	this	board,	getCowMove(board)	can	return	any	one	of	'right',	'left',	or	'down',	as	
noted	in	this	test	case:	
			board	=	[[0,	0,	0,	0,	0,	0,	0,	0],	
													[0,	0,	1,	0,	0,	2,	0,	0],	
													[2,	0,	0,	0,	0,	0,	0,	0],	
													[0,	0,	0,	0,	0,	0,	0,	2]	
]	
			assert(getCowMove(board)	in	['right',	'left',	'down'])	
	
Write	your	answer	on	the	following	page.	
	

	

	

[this	page	is	blank	(for	getCowMove)]	

	

6. 	[25	pts]		Free	Response:	squareClick	Animation	
Assuming	the	run()	function	is	already	written	for	you,	write	init,	keyPressed,	mousePressed,	
redrawAll,	and	timerFired	so	that	when	the	animation	is	first	run:	

A. A	small	square	is	centered	in	the	canvas.	

B. A	score	of	0	is	displayed	near	the	left	top	corner	of	the	canvas.	

Game	play	proceeds	as	such:	

C. The	square	stays	centered,	but	grows	larger	(at	some	reasonable	speed)	until	it	fills	the	
window,	then	it	shrinks	again	until	it	is	tiny,	and	then	it	grows	again,	and	shrinks	again,	and	
so	on.	

D. Each	time	the	user	presses	the	mouse,	if	it	is	within	a	distance	of	20	to	the	nearest	corner	of	
the	square,	the	score	increases	by	1	point.		Otherwise,	the	score	decreases	by	1	point,	
unless	it	would	be	negative,	and	then	it	just	stays	at	0.	

E. Each	time	the	user	presses	the	Up	arrow,	the	square	should	grow	and	shrink	faster	(twice	as	
fast).	

F. Each	time	the	user	presses	the	Down	arrow,	the	square	should	grow		and	shrink	slower	(half	
as	fast).	

G. Each	time	the	user	presses	‘p’,	if	the	game	is	unpaused	(as	it	is	at	the	start),	the	square	
pauses,	but	mouse	presses	are	still	processed	normally.		If	paused,	pressing	‘p’	unpauses	
and	the	square	resumes	its	growing	and	shrinking.	

Make	reasonable	assumptions	for	anything	not	specified	here,	and	in	any	case	avoid	hardcoding	
values	(such	as	data.width,	data.height,	or	data.timerDelay).		Also,	while	the	square	sometimes	
moves	at	different	speeds,	you	must	only	use	one	timer	and	only	one	timerFired	function.	
	
	
	
	
	
	
	
	
	
	
	
	

	
																																																									[this	page	is	blank	(for	squareClick))	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
																																																						[this	page	is	blank	(for	squareClick))	

																																																												[the	top	of	this	page	is	blank	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Bonus/Optional:		[2.5	pts]		What	will	this	print?	
	
def	bonusCt1(s,b):	
				def	f(s):	
								try:	return	int(str(s)+'0',	b)	
								except:	return	s	
				return	s	if	(b	<	2)	else	f(bonusCt1(s,b-1))	
print(bonusCt1(3,8))	
	
	
Bonus/Optional:		[2.5	pts]		What	will	this	print?	
	
def	bonusCt2(n,	expr='1',	ops='+-*/'):	
				for	i	in	range(2,n):	expr	+=	'%s%d'	%	(ops[(i-2)%4],	i)	
				return	eval(expr.replace('/','//'))	
print(bonusCt2(101))	
	

