
15-112 Midterm #2a – Spring 2017
80 minutes

Name: _______________________________________

Andrew ID: ________________________@andrew.cmu.edu

Section: _______

• You	may	not	use	any	books,	notes,	or	electronic	devices	during	this	exam.		

• You	may	not	ask	questions	about	the	exam	except	for	language	clarifications.	

• Show	your	work	on	the	exam	(not	scratch	paper)	to	receive	credit.

• If	you	use	scratch	paper,	you	must	submit	it	with	your	andrew	id	on	it,	and	we	will	ignore	it.	

• All	code	samples	run	without	crashing.		Assume	any	imports	are	already	included	as	required.

• When problems specify to use recursion, you must use it meaningfully. In such
cases, you may use wrapper functions or add optional parameters if it helps.

DO NOT WRITE IN THIS AREA

Part 1 (CT) 15 points

Part 2 (RC) 5 points

Part 3 (SA) 5 points

Part 4 (Big-Oh) 10 points

Part 5 (FR/sectionMap) 15 points

Part 6 (FR/A-and-B) 20 points

Part 7 (FR/fractals) 10 points

Part 8 (FR/summish) 20 points

Part 9/bonus 5 points bonus

Total 100 points

	

1. [15	pts]	Code	Tracing	

Indicate	what	these	will	print:	

Statement(s):	 Prints:	
	
def	ct1(L):	
				if	(L	==	[]):	
								return	[42]	
				else:	
								t	=	L[0]	+	L[-1]	
								if	(t	%	2	==	0):	
												return	ct1(L[:len(L)//2])	+	[-t]	
								else:	
												return	[t]	+	ct1(L[1:])	
L	=	[2,	5,	4,	3]	
print(ct1(L))	#	prints	4	integers	

Statement(s):	 Prints:	
	
def	ct2(n):	
				calls	=	list()	
				def	g(n):	
								calls.append('g%d'	%	n)	
								if	(n	<=	0):	return	10*n	
								else:	return	n	+	h(n	//	2)	
				def	h(n):	
								calls.append('h%d'	%	n)	
								if	(n	<=	0):	return	n	
								else:	return	n	-	g(n	-	2)	
				result	=	g(n)	
				return	str(result)	+		''.join(calls)	
print(ct2(6))		#	prints	a	string	of	length	9	

Statement(s):	 Prints:	
	
def	ct3(d):	
				t,u	=	set(),set()	
				def	f(s,t,u):	
								for	val	in	s:	
												if	(val	in	t):	
																t.remove(val)	
																u.add(val)	
												else:	
																t.add(val)	
																if	(val	in	u):	u.remove(val)	
				f(d.keys(),	t,	u)	
				for	key	in	d.keys():	
								f(d[key],	t,	u)	
				return	[sorted(t),	sorted(u)]	
#	prints	a	2d	list	
print(ct3({	2:{3},	4:{2,0},	3:{0,3}	}))	

2. [5	pts]	Reasoning	about	code	
For	this	function,	find	values	of	the	parameters	so	that	the	function	will	return	True.		Place	your	
answers	in	the	box	on	the	right	of	the	function.	
	

	
def	rc1(L):	
				#	L	is	a	rectangular	2d	list	of	ints	
				def	f(L,	d=0):	
								if	(L	==	[]):	
												return	[]	
								else:	
												(rows,	cols)	=	(len(L),	len(L[0]))	
												x,	y	=	L[-1][0],	L[0][-1]	
												M	=	[row[1:]	for	row	in	L[1:]]	
												return	[x+d,	y+d]	+	f(M,	d+1)	
				return	(f(L)	==	[2,	4,	6,	8])	
	

	
	
	
L	=	_______________________	
	

	

3. 	[5	pts]	Short	Answer	(just	FloodFill)	

Answer	the	following	very	briefly.	

A. Say	we	start	with	a	4x5	board	and	fill	the	black	squares	as	shown	below	(in	the	code	from	our	
notes,	the	black	squares	would	be	green,	and	the	white	squares	would	be	cyan).		Then	we	right-
click	where	the	star	is	to	start	a	floodFill	from	there.		On	the	left,	write	the	numeric	labels	for	the	
depths	that	result	in	each	cell	after	the	floodFill	completes.		On	the	right,	write	the	numeric	labels	
for	the	ordinals.	
	

	
depths	

	
ordinals	

	
Hint	#1:	the	numbers	on	the	left	are	depths,	so	some	labels	may	occur	more	than	once.	
Hint	#2:	the	numbers	on	the	right	are	ordinals,	so	labels	must	occur	only	once	each.	
Hint	#3:	the	first	label	is	0,	not	1	(so	a	0	should	be	where	the	star	is).	
Hint	#4:		Our	floodFill	code	recursively	tries	to	go	up,	then	down,	then	left,	then	right.	
	

4. [10	pts]	Big-Oh:		State	the	worst-case	Big-Oh	runtime	for	each	of	the	following	functions:	

Function:	 Big-Oh:	
	
def	bigOh1(L):	
				#	assume	L	is	a	1d	list	
				N	=	len(L)	
				s	=	set()	
				for	i	in	range(N**2):	
								s.add(L[i	%	N])	
				return	sorted(s)	

def	bigOh2(s):	
				#	assume	s	is	a	set	
				N	=	len(s)	
				d,	L	=	dict(),	list()	
				d[N//3]	=	N**4	
				for	i	in	range(N):	
								for	j	in	range(i,	i+3):	
												if	(j	not	in	s):	
																L.append(j)	
																d[i]	=	j	
				for	val	in	reversed(L):	
								d[val]	=	L.index(val)	
				return	d	

def	bigOh3(L):	
				#	assume	L	is	an	NxN	(square)	2d	list	
				#	assume	selectionSort,	mergeSort,	and	
				#	binarySearch	are	written	as	usual	
				N	=	len(L)	
				M	=	[]	
				for	A	in	L:	
								mergeSort(A)	
								for	val	in	A:	M.append(val)	
				selectionSort(M)	
				return	binarySearch(M,	42)	

def	bigOh4(L):	
				#	assume	L	is	an	NxN	(square)	2d	list	
				N	=	len(L)	
				def	f(i=N-1,	d=0):	
								if	(i	==	0):	return	0	
								else:	return	(L[i][i]	+	d	+	f(i//2,	d+1))	
				return	f()	

5. 	[15	pts]		Free	Response:		makeSectionMap(roster)	

This	problem	uses	a	'roster',	which	is	a	list	of	tuples	with	3	string	values	--	id,	section,	and	role	
(where	role	is	either	'student'	or	'ta').		For	example:	
				roster	=	[('fred',	'B',	'student'),	
															('wilma',	'B',	'ta'),	
															('betty',	'Q',	'student'),	
															('barney',	'Q',	'ta'),	
															('bambam',	'B',	'student'),	
															('pebbles',	'Q',	'ta')	
]	
With	this	in	mind,	write	the	function	makeSectionMap(roster)	that	takes	a	roster	and	returns	a	
sectionMap,	which	is	a	dictionary	where	the	keys	are	the	sections	in	the	roster,	and	the	values	are	
a	tuple	of	two	sets	--	a	set	of	ta's	and	a	set	of	students	who	are	in	that	section.	For	example,	the	
roster	above	returns	the	following	sectionMap:	
				{	'B':	({'wilma'},	{'fred',	'bambam'}),	
						'Q':	({'barney',	'pebbles'},	{'betty'})	
				}	
Also,	if	anyone	appears	more	than	once	in	the	roster,	your	function	must	raise	an	appropriate	
Exception	instead	of	returning	normally.	For	example,	if	we	added	the	tuple	('fred',	'Q',	'ta')	to	the	
roster	above	and	called	makeSectionMap	again,	this	would	result	in	the	Exception	'Duplicate	in	
roster:	fred'	being	raised.	
	

	

																																							[this	page	is	blank	(for	makeSectionMap)]	

	

6. [20	pts]		Free	Response:		A	and	B	classes	

Write	the	classes	A	and	B	so	that	the	following	test	code	runs	without	errors.		Do	not	hardcode	
against	the	values	used	in	the	example	test	cases,	though	you	may	assume	the	types	of	those	
values	match	the	examples.		For	full	credit,	you	must	use	proper	OOP,	placing	methods	at	the	right	
level	and	using	inheritance	appropriately.	
	
				a1	=	A(1,5,3,4,2,3)	#	A's	constructor	takes	variable	#	of	arguments	

				assert(a1.evens	==	[2,	4])			#	evens	are	in	sorted	order	

				assert(a1.odds	==	[1,5,3,3])	#	but	odds	are	in	the	original	order	

				assert(str(A(4,3,2,5)	==	'A(evens=[2,	4],odds=[3,	5])'))	

	

				#	Two	A's	are	equal	if	their	evens	are	equal,	regardless	of	their	odds.	

				assert(A(4,3,2,5)	==	A(2,3,4))	

				assert(A(4,3,2,5)	!=	A(3,4,5))	

				assert(A(4,3,2,5)	!=	"don't	crash	here!")	

	

				#	Note:	clearOdds	and	clearedOdds	are	not	the	same	(only	one	is	destructive)	

				a2	=	A(4,3,2,5)	

				a2.clearOdds()	

				assert(str(a2)	==	'A(evens=[2,	4],odds=[])')	

				a3	=	A(4,3,2,5)	

				a4	=	a3.clearedOdds()	

				assert(isinstance(a4,	A))	

				assert(str(a3)	==	'A(evens=[2,	4],odds=[3,	5])')	

				assert(str(a4)	==	'A(evens=[2,	4],odds=[])')	

	

				s	=	set()	

				assert(A(1,2)	not	in	s)	

				s.add(A(1,2))	

				assert(A(1,2)	in	s)	

				assert(A(1,2,3)	in	s)	#	because	A's	only	use	evens,	not	odds,	for	equality	

	

				b1	=	B(3,	7)	#	creates	an	A	using	values	[3,4,5,6,7]	

				assert(isinstance(b1,	A))	

				assert(str(b1)	==	'A(evens=[4,	6],odds=[3,	5,	7])')	

	

				#	Note:	only	B's	and	no	other	A's	can	call	shifted:	

				b2	=	b1.shifted(2)	#	so	instead	of	(3,7)	it's	now	(3+2,7+2)	

				assert(str(b2)	==	'A(evens=[6,	8],odds=[5,	7,	9])')	

				assert(type(b2)	==	B)	

				crashed	=	False	

				try:	a	=	A(1,	2).shifted()	#	this	should	crash	

				except:	crashed	=	True	

				assert(crashed	==	True)	

				print("Passed!")	

	

																																																	[this	page	is	blank	(for	A	and	B	classes)		
		

																																																[this	page	is	blank	(for	A	and	B	classes)	

	

7. [10	pts]	Free	Response:		drawRectishTriangle	

Background:	here,	we	will	modify	the	Sierpinsky	Triangle	to	instead	create	a	Rectish	Triangle	(a	
coined	term).		This	picture	shows	Rectish	Triangles	at	levels	0,	1,	and	2:	
	

	
You	may	assume	most	of	the	animation	code	for	this	program	is	already	written	for	you.		The	only	
function	you	must	write	is	drawRectishTriangle,	which	takes	(canvas,	x0,	y0,	x1,	y1,	level)	and	uses	
the	canvas	to	draw	a	rectish	triangle	of	the	given	level	so	that	it	fits	in	the	rectangle	with	an	upper-
left	corner	of	(x0,	y0)	and	a	lower-right	corner	of	(x1,	y1).		Naturally,	this	function	must	use	
recursion	in	a	meaningful	way.	
	

	

	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	

8. [20	pts]		Free	Response:	makeSummish(L)	
We	will	say	that	a	list	L	is	summish	(a	coined	term)	if	for	each	sequence	of	3	consecutive	values	in	L,	
their	sum	is	within	1	(inclusive)	of	a	multiple	of	10.		For	example:	
		L	=	[2,	4,	14,	23,	22]	
We	see:	
			2	+		4	+	14	==	20,	a	multiple	of	10	

			4	+	14	+	23	==	41,	within	1	of	a	multiple	of	10	

		14	+	23	+	22	==	59,	within	1	of	a	multiple	of	10	

So	L	is	summish.		However:	
		M	=	[2,	4,	6]	

We	see:	
		2	+	4	+	6	==	12,	not	within	1	of	a	multiple	of	10	

So	M	is	not	summish.		Also,	all	lists	shorter	than	length	3	are	summish.	
	
With	this	in	mind,	and	using	backtracking	properly,	write	the	function	makeSummish(L)	that	takes	a	
list	L,	and	returns	the	new	list	M	such	that	L	and	M	contain	identical	values,	so	M	is	some	re-
ordering	of	L,	but	M	is	summish.		Return	None	if	no	such	list	exists.	
	
For	example,	makeSummish([2,	4,	6,	3])	might	return	[4,	2,	3,	6],	among	other	possible	answers	
(any	legal	answer	is	fine).	
	
Note:	you	must	use	backtracking	to	receive	credit.		In	particular,	you	may	not	create	every	possible	
permutation	of	L,	as	that	would	take	far	too	long.	
	
	
	

																																																[this	page	is	blank	(for	makeSummish))	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

9. Bonus/Optional:	
Bonus/Optional:		[2.5	pts]		What	will	this	print?	

def	bonusCt1(f=lambda	x:x%7):	

				def	g(f,	n=8):	return	f	if	(n<=0)	else	lambda	x:g(f,n-1)(x)+f(n)	

				return	g(f)(2)	

print(bonusCt1(lambda	x:x//2))	

	

Bonus/Optional:		[2.5	pts]		What	will	this	print?	

def	bonusCt2():	

				def	f(n,	e=10**-10):	m	=	1+1/n;	return	m	if	(abs(n-m)<e)	else	f(m)	

				return	round((f(1)*2-1)**2)	

print(bonusCt2())	

