
Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

15-112	Spring	2017	Quiz	2a	
*	Up	to	25	minutes.		No	calculators,	no	notes,	no	books,	no	computers.		*	Show	your	work!	

*	No	strings,	lists,	or	recursion	

1. Code	Tracing		[20	pts]:Indicate	what	these	print.	Place	your	answers	(and	nothing	else)	in	the	boxes	below	the	code.	
	
def	ct1(x,	y,	z):	
		count	=	0	
		while	(x	>	y):	
				x	//=	2	
				y	-=	z	
				z	+=	1	
				print(x,	end='	')	
				print(y,	end='	')	
		return	z	
print(ct1(20,	10,	2))	#	prints	5	values	
	

	
	
	
	
	
	
	
	

def	ct2(x):	
		y	=	3	
		while	True:	
				print(y,	end='	')	
				for	z	in	range(1,	x*y,	2):	
						if	(z	%	3	==	1):	
								print(z,	end='	');	
								continue	
						y	+=	x	
						if	(y	%	5	>	0):	
								print(y,	end='	')	
								break	
						print(y,	end='	')	
				if	(y	>	10):	return	x	
				y	+=	1	
print(ct2(7))	#	prints	5	values	

	
	
	
	
	
	



	

	

2. Reasoning	Over	Code	[10	pts]: 
Find	an	argument	for	the	following	function	that	makes	it	return	True.		Place	your	answers	(and	nothing	else)	in	the	
boxes	below	the	code:	
	
def	rc1(n):	
		if	(n	==	0):	return	False	
		count	=	0	
		for	x	in	range(0,	100,	n):	
				count	+=	1	
		#	hint:	here,	x	equals	the	last	value	in	the	range	
		return	((count	==	5)	and	(x//10	==	x%10	+	4))	
	

	
n	=		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Quiz	continues	on	next	page	



Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

3. Free	Response	1:	nthDecreasingOddsNumber(n)	[35	pts]	
Background:		we	will	say	that	a	positive	integer	is	a	"decreasing	odds	number"	(a	coined	term)	if	all	the	digits	are	odd	
and	each	digit	is	smaller	than	the	one	before	it,	moving	left	to	right.		So	973	and	91	are	decreasing	odd	numbers,	but	
977,	9073,	379,	963	and	972	all	are	not.		With	this	in	mind,	write	the	function	nthDecreasingOddsNumber(n),	which	
you	can	abbreviate	as	nd(n),	which	takes	a	non-negative	int	n	and	returns	the	nth	decreasing	odds	number.		Note	
that	nd(0)	should	return	1,	and	the	first	several	decreasing	odds	numbers	are:		1,	3,	5,	7,	9,	31,	51,	53,	71,	73,	75,	91,	
93,	95,	97,	531,	731,	751,	753,	931,...	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
																																																																											Quiz	continues	on	next	page	
	



	

4. Free	Response	2:	latticePointCount(f,	x1,	x2)	[35	pts]	
Background:	a	lattice	point	is	a	point	(x,y)	where	x	and	y	are	both	integers.		With	this	in	mind,	write	the	function	
latticePointCount(f,	x1,	x2)	that	takes	a	function	f	and	two	floats	x1	and	x2	where	x1	<	x2,	and	returns	the	number	of	
lattice	points	f(x)	passes	through	when	x1	<=	x	<=	x2.		Since	we	are	using	floats	here,	consider	a	number	an	integer	if	
it	is	almost	equal	to	the	nearest	integer.		An	example	may	help:	
		def	f(x):	return	x/2	+	0.5	
		print(latticePointCount(f,	0.8,	4.7))	
We	are	checking	for	lattice	points	for	0.8	<=	x	<=	4.7.		But	we	only	need	to	consider	integer	values	for	x	(right?),	so	
we	consider	1	<=	x	<=	4:	
			f(1)	=	1.0		#	so	(1,1)	is	a	lattice	point!	
			f(2)	=	1.5	
			f(3)	=	2.0		#	so	(3,2)	is	a	lattice	point!	
			f(4)	=	2.5	
So	there	are	2	lattice	points	in	the	range,	and	latticePointCount(f,	0.8,	4.7)	returns	2.		Note:	you	may	not	assume	
that	almostEqual	is	already	written	for	you.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5. Bonus/Optional:		Code	Tracing	[5	pts]	Indicate	what	this	prints.	Circle	your	answer	below	each	function.	

def	bonusCt1(x,	y=0):	
		def	f(x):	
				for	y	in	range(x):	x	+=	2*y	
				return	x	
		for	x	in	range(f(x),	f(f(x)),	x):	
				if	(x%10	+	x//10	>	13):	y	=	100*y	+	x	
		return	y	
print(bonusCt1(3))	

def	bonusCt2(n):	
		(a,b,c)	=	(0,1000,	100)	
		while	(c	<	1000):	
				for	x	in	range(a,	b,	c):	
						(a,b,c)	=	(a+1,	b-1,	c+50)	
		return	a-n	
print(bonusCt2(2))	

	


