\qquad
\qquad
\qquad

15-112 Spring 2017 Quiz 3a

* Up to 25 minutes. No calculators, no notes, no books, no computers. * Show your work! * No lists, or recursion

1. Code Tracing [20 pts]:Indicate what these print. Place your answers (and nothing else) in the boxes below the code.
```
def ct1(s):
    print(chr(ord('G') + ord(s[1]) - ord(s[0])), end='')
    t, count = '', 0
    for c in s:
            if (not c.isalnum()): t += c
            if (c.isdigit()): print(c, end='')
            elif (c.isupper()): print(c.lower(), end='')
            else: count += 1
    return ('\tt=%s\t%d' % (t, count))
print(ct1('ae1#B2cD!'))
```

```
def ct2(s):
    r= t = ''
    for i in range(len(s)):
            if (s[i] in s[i+1:]): r += str(i)
            else: t += s[i]
        return r + t[::-1]
print(ct2('aebacab'))
```

2. Reasoning Over Code [10 pts]:

Find an argument for the following function that makes it return True. Place your answers (and nothing else) in the boxes below the code:

```
def rc1(s):
    if (not isinstance(s, str)): return False
    t = string.ascii_uppercase
    return ((s[3::3] == t[0:2]) and
                                    (s[-1::-2] == t[:5]) and
            (s.count(s[0]) > 3))
```

$\mathrm{S}=$
3. Short Answers [10 pts]:

Unlike the rest of this quiz, the questions in this section (and just this section) cover check4 (Graphics and 1d Lists). Answer each of the following in just a few brief words or a line or two of code, as appropriate.
a. In just a few words, where on the canvas is the origin $(0,0)$ in Tkinter graphics?
b. Assuming canvas already exists, write one line of code that draws a circle in the canvas, centered at $(50,100)$, with radius 20 .
c. Assuming L is a list, what does $L[$: $]$ evaluate to?
d. In just a few words, given a list L, what is the difference between $L . \operatorname{sort}()$ and sorted(L).
e. In just a few words, what is the difference between tuples and lists?

Name: \qquad
\qquad Andrew Id: \qquad
4. Free Response: encode(s, pwd) [50 pts]

Here we consider a simple way to encode an all-lowercase string s, using a positive integer pwd as the password. Let's start with an example: if s is 'abyzc' and pwd is 234 , we repeat the digits of the password as necessary so each character in s has a digit beneath it, like so:
$\begin{array}{lllll}a & b & y & z & c\end{array}$
23423
Next, to find the encoded string, we offset each character by the integer below it, wrapping around as necessary. That is:

a	b	y	z	c
2	3	4	2	3
c	e	c	b	f

Thus, we see that encode('abyzc', 234) returns 'cecbf'.
With this in mind, write the function encode(s, pwd) so that it works as described
5. Bonus/Optional: Code Tracing [5 pts] Indicate what these print. Place your answers (and nothing else) in the boxes below the code.

```
def bonusCt1(s, t=''):
    while len(s)>0: (s, t) = (s[2:-2:2][::-1], t+s[-1])
    return t
print(bonusCt1(string.ascii_lowercase))
```


def bonusCt2(s):
$s=(s[1:: 3] * 3)[::-1][1:: 5]$
return ''.join([chr(ord('G')+ord(c)-ord('b')) for c in s])
print(bonusCt2("Carpe diem!"))
\square

