
Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

15-112	Spring	2017	Quiz	4a	
*	Up	to	35	minutes.		No	calculators,	no	notes,	no	books,	no	computers.		*	Show	your	work!		*	No	recursion	

1. Code	Tracing		[20	pts]:Indicate	what	these	print	or	(for	graphics)	draw.	Place	your	answers	(and	nothing	else)	in	the	
boxes	below	the	code.	
	
def	ct1(A,	B,	C,	D,	E):	
				result	=	[	]	
												#		0					1					2					3					4					5					6					7					8					9	
				pairs	=	[(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)]	
				for	i,pair	in	enumerate(pairs):	
								(L,	M)	=	pair	
								if	(L	is	M):	result.append(i)	
								elif	(L	==	M):	result.append(10*i)	
				return	result	
def	f(L):	
				L[0]	+=	1	
				return	L	
A	=	list(range(3))	
B	=	copy.copy(A)	
C,	D,	E	=	A,	B+[	],	f(B)	
print(ct1(A,	B,	C,	D,	E))	

	
	
	

def	drawCt2(canvas,	width,	height):	
				#	Draw	a	picture	of	what	this	draws	on	the	screen.	
				#	Assume	the	box	below	is	drawn	by:	canvas.create_rectangle(0,	0,	200,	200)	
				for	x	in	range(50,	200,	50):	
								if	(x	<	100):	
												canvas.create_line(x,	x,	x/2,	4*x)	
								elif	(x	>	123):	
												canvas.create_oval(x,	0,	200,	100)	
								else:	
												canvas.create_polygon(x,	100,	2*x,	50,	x,	150)	
												canvas.create_text(x,	150,	anchor=NW,	text="CT2!")	

	
	
	
	
	
	
	
	
	
	
	



	

	

2. Reasoning	Over	Code	[10	pts]: 
Find	an	argument	for	the	following	function	that	makes	it	return	True.		Place	your	answers	(and	nothing	else)	in	the	
boxes	below	the	code:	
	
def	rc1(L):	
				if	(not	isinstance(L,	list)):	return	False	
				result	=	[	]	
				while	(L	!=	[	]):	
								result.extend([L.pop(),	L.pop(0)])	
								L	=	L[1:-1]	
				return	(result	==	list(range(2,6)))	

	
L	=		
	

	

3. Short	Answers	[10	pts]: 
Unlike	the	rest	of	this	quiz,	the	questions	in	this	section	(and	just	this	section)	cover	check5	(2d	Lists).		Answer	each	
of	the	following	in	just	a	few	brief	words	or	a	line	or	two	of	code,	as	appropriate.	
	

a. Given	a	rectangular	2d	list	L,	write	an	expression	(not	a	statement)	that	evaluates	to	a	tuple	containing	the	
dimensions	of	L	(rows	x	cols).	
	
	
	

b. Write	one	line	of	Python	that	assigns	a	non-rectangular	2d	list	into	the	variable	L.	
	
	
	

c. Say	that	a	2d	list	L	is	incorrectly	allocated	as	such:	
			(rows,	cols)	=	(2,	2)	
			L	=	[	[0]	*	cols	]	*	rows	
Then,	we	set	L[0][0]	to	42.		What	other	value	in	L	will	now	be	42?	
	
	
	

d. Given	a	500x500	list	L,	write	a	list	comprehension	that	evaluates	to	a	1D	list	of	the	values	in	the	last	
(rightmost)	column	of	L.	Do	not	write	any	statements	here,	just	one	list	comprehension.	
	
	
	

e. Draw	the	box-and-arrow	diagram	of	L	and	M	after	this	code	is	run:	
				L	=	[[1],[2]]	
				M	=	[L[0],	L[0][0]]	
	
	
	



Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

	
	

4. Fill	in	the	Blank	[10	pts]:	
Fill	in	the	5	blanks	with	the	missing	code	from	the	case	studies	in	the	notes.	
	
def	sieve(n):	
				isPrime	=	[	True	]	*	(n+1)	#	assume	all	are	prime	to	start	
				isPrime[0]	=	isPrime[1]	=	False	#	except	0	and	1,	of	course	
				primes	=	[	]	
				for	prime	in	range(n+1):	
	
								if	(________________________________________________________________________):	
	
												#	we	found	a	prime,	so	add	it	to	our	result	
												primes.append(prime)	
												#	and	mark	all	its	multiples	as	not	prime	
												for	multiple	in	range(2*prime,	n+1,	prime):	
	
																______________________________________________________________________	
	
				return	primes	
	
	
	
	
	
	
	
def	swap(a,	i,	j):	
	
				__________________________________________________________________________________	
	
	
	
	
	
	
	
def	selectionSort(a):	
				n	=	len(a)	
				for	startIndex	in	range(n):	
	
								minIndex	=	___________________________________________________________________	
	
								for	i	in	range(startIndex+1,	n):	
	
												if	(____________________________________________________________________):	
	
																minIndex	=	i	
								swap(a,	startIndex,	minIndex)	
	



	

5. Free	Response:	nearMedians(L)		[40	pts]	
The	median	of	a	sorted	list	L	is	the	middle	value	(or	the	average	of	the	two	middle	values	if	the	length	of	L	is	even).		
Assuming	L	only	contains	integers,	we	will	say	that	a	value	is	"near-median"	if	it	is	within	10,	inclusive,	of	the	
median.	
	
With	this	in	mind,	write	the	function	nearMedians(L)	that	takes	an	arbitrary	Python	value,	and	if	it	is	a	(possibly	
unsorted)	non-empty	list	only	containing	integers,	the	function	returns	a	sorted	list	of	the	near-median	values	in	L.		
Otherwise,	the	function	returns	None.	
	
Here	is	a	sample	test	function	for	you.		You	may	wish	to	carefully	look	it	over,	as	it	may	help	you	further	understand	
the	problem	spec:	
	
				def	testNearMedians():	
								print('Testing	nearMedians()...',	end='')	
								assert(nearMedians([1,	49,	50,	51,	99])	==	[49,	50,	51])	
								assert(nearMedians([49,	1,	50,	99,	51])	==	[49,	50,	51])	
								assert(nearMedians([1,	48,	52,	99])	==	[48,	52])	
								assert(nearMedians([48,	1,	99,	52])	==	[48,	52])	
								assert(nearMedians([1,	1,	1,	1,	1])	==	[1,	1,	1,	1,	1])	
								assert(nearMedians([	])	==	None)	
								assert(nearMedians(["ugh"])	==	None)	
								assert(nearMedians("ugh")	==	None)	
								print('Passed')	
	
	



Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

This	page	is	intentionally	blank	for	your	nearMedians	solution.	

	



	

6. Bonus/Optional:		Code	Tracing	[7.5	pts]	Indicate	what	these	print.		Place	your	answers	(and	nothing	else)	in	the	
boxes	below	the	code.	
	
	
	
def	bonusCt1(n):	
				L	=	[n//n]*n;	L	=	L*n	
				return	sum([sum(L)]*len(L))	
print(bonusCt1(3))	

	
	
	

	
	
	
def	bonusCt2(L):	
				def	f(g,L):	
								r	=	[]	
								for	v	in	L:	r.extend([v]	if	g(v)	else	[])	
								return	len(r)	
				def	g(z):	return	(z%5)*(z%3)	
				return	f(g,list(L))	
print(bonusCt2(range(1500)))	

	
	
	

	
	
	

def	bonusCt3(L):	
				s	=	str(list(L))	
				while	(s.count("'")	<	20):	s	=	str(list(s))	
				return	s.count("'")	
print(bonusCt3(range(2)))	

	
	
	

	


