
Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

15-112	Spring	2017	Quiz9a	
*	Up	to	30	minutes.		No	calculators,	no	notes,	no	books,	no	computers.		*	Show	your	work!	*	No	recursion	

1. Big-Oh	[10	pts]:	
What	is	the	worst-case	big-oh	runtime	of	each	of	the	following,	in	terms	of	N?	Assume	L	is	a	list	of	N	integers,	and	x	
is	a	positive	integer	where	N	=	math.log(x,	2).		Place	your	answer	(and	nothing	else)	in	the	box	next	to	the	code.	

def	bigOh1(L):	
				N	=	len(L)	
				M1	=	[L[i]**2	for	i	in	range(1,	len(L),	3)]	
				M2	=	[L[i]**3	for	i	in	range(1,	3)]	
				M3	=	sorted([x*y	for	x	in	L	for	y	in	L])	
				return	sum(sorted(M1	+	M2	+	M3))	
	
	
	

	

def	bigOh2(L):	
				N	=	len(L)	
				R	=	[]	
				for	k	in	L:	
								M,	s,	d	=	copy.copy(L),	set(),	dict()	
								while	(M	!=	[]):	
												s.add(M[0]**2)	
												try:	d[M.pop()]	=	M.pop(0)	+	k	
												except:	print("Uh	oh!")	
												M	=	M[::-1]	
								R	+=	[(k	+	v**3)	for	v	in	s]	
				return	(min(R),	max(R))	
	

	

	

2. Short	Answer	[10	pts]	
Be	very	brief.	
	

a. Given	the	list	[4,7,2,3,5],	what	will	the	list	be	after	exactly	2	swaps	are	made	in	selectionSort,	as	it	works	in	
xSortLab?	
	
	
	
	

b. State	and	prove	the	worst-case	big-oh	of	mergesort.		Note	that	a	well-labeled	picture	can	be	sufficient	
proof.	
	
	
	
	
	
	
	

	

	

	

3. True	or	False	[10	pts]			Circle	your	answers.	

a.			True		or		False	 While	mergesort	is	generally	faster	than	bubblesort,	if	L	is	already	sorted	in	increasing	order,	
then	bubblesort(L)	is	faster	than	mergesort(L).	
	

b.			True		or		False	 Given	some	function	H,	and	some	value	N	>	10**5,	if:	
				(almostEqual(math.log(N,	2),	len(set([H(x)	for	x	in	range(N)])))	
Then	H	is	probably	a	good	hash	function.	
	

c.			True		or		False	 If	(x	==	hash(x)),	then	x	must	be	an	integer.	
	

d.			True		or		False	 A	hashtable	implementation	may	require	lists	even	though	the	hashtable	is	not	allowed	to	
include	lists	as	keys.	
	

e.			True		or		False	 In	'ternary	search',	as	opposed	to	binary	search,	we	divide	the	list	into	3	parts	on	each	pass,	and	
so	we	can	eliminate	2/3rds	of	the	list	on	each	pass.		While	this	will	generally	reduce	the	number	
of	passes	required	to	find	an	element	in	a	sorted	list,	it	does	not	improve	the	worst-case	big-oh	
runtime	compared	to	binary	search.	

	

4. Fill	in	the	Blank		[10	pts]		
This	implementation	of	mergesort	and	merge	is	from	the	course	notes.		Fill	in	the	blanks	with	the	missing	code.	
def	merge(a,	start1,	start2,	end):	
				index1	=	start1	
				index2	=	start2	
				length	=	end	-	start1	
				aux	=	___	
				for	i	in	range(length):	
	
								if	((__)	or	
												((index2	!=	end)	and	(a[index1]	>	a[index2]))):	
												aux[i]	=	a[index2]	
												index2	+=	1	
								else:	
												aux[i]	=	a[index1]	
												index1	+=	1	
				for	i	in	range(start1,	end):	
								a[i]	=	___	
	
def	mergeSort(a):	
				n	=	len(a)	
				step	=	1	
				while	(step	<	n):	
								for	start1	in	range(0,	n,	2*step):	
	
												start2	=	min(___,	n)	
												end	=	min(start1	+	2*step,	n)	
												merge(a,	start1,	start2,	end)	
	
								___	*=	2	
	

Name:__________________________________				Section:___					Andrew	Id:	____________________	 	 	

	

5. Free	Response:	antisocialScore(d,	person)	[40	pts]	
	
Recall	that	friendsOfFriends(d)	takes	a	dictionary	d	like	this:	
				d	=	dict()	
				d["fred"]		=	set(["betty",	"barney"])	
				d["wilma"]	=	set(["fred",	"betty"])	
				d["betty"]	=	set(["barney"])	
				d["barney"]	=	set([])	
	
We	will	consider	a	person	A's	antisocial	score	to	be	the	number	of	people	B	such	that	A	is	a	friend	of	B,	but	B	is	not	a	
friend	of	A.		The	higher	the	score,	the	more	antisocial	the	person	is.	In	the	example	above:	

Person	 Antisocial	Score	 Reason	
wilma	 0	 nobody	likes	wilma,	so	wilma	cannot	dislike	anyone	who	likes	her	
fred	 1	 wilma	likes	fred,	but	fred	does	not	like	wilma	
betty	 2	 fred	and	wilma	like	betty,	but	betty	does	not	like	them	
barney	 2	 fred	and	betty	like	barney,	but	barney	does	not	like	them	

With	this	in	mind,	write	the	function	antisocialScore(d,	person)	that	takes		a	dictionary	of	that	form,	and	a	person	
who	you	may	assume	is	in	the	dictionary,	and	returns	the	antisocial	score	of	that	person.	Thus,	in	the	example	
above:	
				assert(antisocialScore(d,	"wilma")		==	0)	
				assert(antisocialScore(d,	"fred")			==	1)	
				assert(antisocialScore(d,	"betty")		==	2)	
				assert(antisocialScore(d,	"barney")	==	2)	
	
	

	

6. Code	Tracing		[10	pts]:Indicate	what	this	prints.	Place	your	answer	(and	nothing	else)	in	the	box	below	the	code.	
	
def	ct1(n):	
				d	=	dict()	
				while	(n	>	0):	
								(i,	j,	n)	=	(n%10,	n//10%10,	n//100)	
								d[j]	=	d.get(j,	set())	
								d[j].add(i)	
				return	[(key,sorted(d[key]))	for	key	in	sorted(d.keys())]	
print(ct1(32421))	

	
	
	

	
	

7. Reasoning	Over	Code	[10	pts]:
Find	an	argument	for	the	following	function	that	makes	it	return	True.		Place	your	answer	(and	nothing	else)	in	the	
box	below	the	code:	
	
def	rc1(k):	
				n	=	100	
				s	=	set(range(n))	
				for	i	in	range(2,n):	
								if	(i	in	s):	
												for	j	in	range(2*i,n,	i):	
																if	(j	in	s):	s.remove(j)					
				return	((k	>=	10)	and	(k	in	s)	and	(2*k-1	in	s))	

	
k	=		
	

	

8. Bonus/Optional:		Code	Tracing	[5	pts;	2.5	pts	each]		What	will	these	print?		Clearly	circle	your	answers.	
def	bonusCt1(s	=	'Maine	has	14	counties,	and	432	towns.'):	
				def	f(s):	
								s,	d,	prevc	=	s.replace('	',''),	dict(),	'x'	
								for	c	in	s:	d[c],	prevc	=	prevc,	c	
								return	''.join([d.get(str(n),	'')	for	n	in	range(10)])	
				while	(len(f(s))	>	1):	s	=	f(s)	
				return	s	
print(bonusCt1())	
	
def	bonusCt2():	
				def	f(s,	S=set()):	
								try:	ugh	=	eval(s)	
								except	Exception	as	e:	
												S.add(str(e)[len('unhashable	type:	'):].replace("'",''))	
								return	''.join(sorted(S))	
				f("{1:{2},3:{4:5},{6}:{7,8}}")	
				return	f("{1:{2},3:{4:5},{6:7}:{8}}")	
print(bonusCt2())	

	

