
  

    

15-112 Fall 2022 Lecture 3 
 Quiz 7B 

45 minutes 
 

Name:  ___________________________________ 
 

Andrew ID:  ___________________@andrew.cmu.edu 

 

Section:  _______ 
 

• You may not use any books, notes, or electronic devices during this quiz.  

• You may not ask questions about the quiz except for language clarifications. 

• Show your work on the quiz (not scratch paper) to receive credit. 

• If you use scratch paper, you must submit it with your andrew id on it, and we will ignore it.  

• All code samples run without crashing unless we state otherwise.  Assume any imports are already 
included as required. 

• Do not use these topics:  recursion. 

• You may use almostEqual() and rounded() without writing them.  You must write everything else. 
 

Do not write below here 
 

Question Points Score 

1. CT 12  

2. FR: getSingletons 25  

3. FR: averageMap 35  

4. Big O 18  

5. Sorting 10  

3. Bonus 5 (bonus)  

TOTAL 100  

 
  



  B 

  
  
  

2 

 
1. CT [12 pts, 6 pts each] 
 
Indicate what these print. Place your answers (and nothing else) in the box next to each block of code. 
 
 
def ct1(d): 
    e = dict() 
    for k in sorted(d): 
        n = (d[k]**2)%10 
        e[n] = k 
    return e 
print(ct1({0:3, 6:2, 1:8, 3:7})) 
 
 
 
 
 
 
 
 
 
 
 
 
 
def ct2(L): 
    s = set() 
    for v in L: 
        if isinstance(v, dict): 
            for k in v: 
                s.add(v[k]) 
        else: 
            s = s.union(set(v)) 
    return s 
print(ct2([[3,3,3], {2:3, 'X':'YZ'}, 'QR'])) 
 
 
 
 
  



  B 

  
  
  

3 

2. Free Response: getSingletons(L) [25 pts] 
Write the function getSingletons(L) that takes a list L of sets, and returns a single set which contains the values 
that occur in exactly one of the sets in L (we're calling these "singletons"). 
 
For example: 
     L = [ {1,2}, {1,3,4,5}, {3,4}] 
We see that 1, 3, and 4 are each in more than one set in the list L, but both 2 and 5 occur in only one set in L.  
Thus, for this list: 
    assert(getSingletons(L) == {2,5}) 
 
Here are two more test cases: 
    M = [ {1}, {2}, {3}, {1,2}, {3,4} ] 
    assert(getSingletons(M) == {4}) 
 
    N = [ {1}, {2}, {3}, {1,2}, {3,4}, {1,4} ] 
    assert(getSingletons(N) == set()) 
 
Important note: assume that L is of length N, and that each set in L contains no more than 10 values.  Your 
solution must run in O(N). 
  



  B 

  
  
  

4 

3. Free Response: averageMap(L) [35 pts] 
 
Background: This problem works with a list L of dicts that each map an integer to a possibly-empty list of 
integers.  For example, here is one such list: 
    L = [ {1:[2,3], 7:[5], 8:[9], }, 
          {1:[4],   7:[1,1,1], 6:[]} ] 
 
With that, write the function averageMap(L) that takes such a list, and returns a dict mapping each integer key K 
in any of the dicts in L to the integer average value (using //) calculated from all lists d[K], where d is each 
dictionary in L.  Ignore keys that only map to empty lists. 
 
For example, consider each key in any dict in L from above: 
 

• For the key 8, there is only one dict with 8 as a key, and the average of that one list is 9.  So the result 
maps 8 to 9. 
 

• For the key 1, there are two dicts with 1 as a key, and they map to the lists [2,3] and [4].  The integer 
average of all these values is (2+3+4)//3 which is 3.  So the result maps 1 to 3. 
 

• For the key 7, again, there are two dicts with 7 as a key, and they map to the lists [5] and [1,1,1], which 
average to (5+1+1+1)//4 which is 2. So the result maps 7 to 2. 
 

• For the key 6, there is only one dict with 6 as a key, and it maps to the empty list [], so we ignore this 
key. 

 
Thus, for the list L above: 
    assert(averageMap(L) == {1:3, 7:2, 8:9}) 
 
Here is another test case for you: 
    M = [ {5:[2,3], 4:[9,2,3,4], 3:[]}, 
          {5:[1],   4:[1],       3:[]} ] 
    assert(averageMap(M) == {5:2, 4:3}) 
 
  



  B 

  
  
  

5 

This page intentionally blank for your answer to averageMap(L). 
 

  



  B 

  
  
  

6 

4. Big O [18 pts, 3 pts each] 
 
For each of the following, indicate which Big O family the code runs in (in the worst case).  Each function takes a 
list L, and N is len(L).  Circle your answers. 

 
1) 
    def f(L): 
        N = len(L) 
        for i in range(N): 
            for j in range(i+1, N): 
                L[i] += L[j] 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 
 
 
2) 
    def f(L): 
        N = len(L) 
        M = [ ] 
        s = set(L) 
        for v in s: 
            M.append(L.count(v)) 
        return M 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 
 
3) 
    def f(L): 
        N = len(L) 
        M = [v**2 for v in L] 
        return set(L) == set(M) 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 



  B 

  
  
  

7 

 
 
4) 
    def f(L): 
        N = len(L) 
        i = N-1 
        while i > 0: 
            L[i] += i 
            i //= 2 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 
 
 
 
 
5) 
    def f(L): 
        # assume len(L) >= 10 
        N = len(L) 
        for i in range(10): 
            L[i] *= i 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 

 
6) 
 
    def f(L): 
        N = len(L) 
        M = sorted(L + L) 
        return sum(M) // len(M) 
 
 
    A) N**2      B) NlogN      C) N      D) N**0.5      E) logN      F) 1 
 
 
 
 
 



  B 

  
  
  

8 

5. Sorting [10 pts] 
State and briefly prove the worst-case Big O for merge sort. Your proof should just be the picture that was 
drawn in the video in the course notes, along with a short note explaining the number of passes and the steps 
per pass in terms of N (the length of the list). 
 

  



  B 

  
  
  

9 

6. Bonus [5 pts] 
Indicate what these print. Place your answers (and nothing else) in the box next to each block of code. 
 
def bonusCt1(K,V): 
    d = { k:v for (k,v) in zip(K,V)}  
    r, c = '', 'a' 
    while c not in r: 
        r, c = r+c, d[c] 
    return r 
print(bonusCt1('cdedcf', 'cdcfde')) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def bonusCt2(L): 
    M = [ ] 
    for v in L: 
        M.extend(list(range(0, 100, v))) 
    N = [set() for _ in range(3)] 
    for v in M: 
        for s in N: 
            if v not in s: 
                s.add(v) 
                break # exit inner loop 
    return sorted(N[-1]) 
print(bonusCt2([2,3,7])) 


