

15-112 Fall 2022 Lecture 3
 Quiz 8A + 8B Handout

• Use this handout to complete quiz8 (version A or version B).

• Submit this handout, but do not write on it.

def testRectAndSquareClasses():

 print('Testing Rect and Square classes...', end='')

 assert(Rect.rectCount == 0)

 r1 = Rect(5, 10)

 assert(Rect.rectCount == 1) # increment with each Rect instance we create

 assert(r1.rectCount == 1) # rectCount is also visible by each Rect instance

 assert((r1.width == 5) and (r1.height == 10))

 assert(str(r1) == '<5x10 Rect>')

 assert(str([r1]) == '[<5x10 Rect>]')

 assert(r1.getArea() == 50)

 r2 = Rect(5, 10)

 assert(Rect.rectCount == 2)

 assert(r1 == r2)

 r3 = Rect(10, 5)

 assert(str(r3) == '<10x5 Rect>')

 assert(r1 != r3)

 assert(r1 != 'Do not crash here!')

 s = set()

 s.add(r1)

 assert(r2 in s)

 assert(r3 not in s)

 # Square is a subclass of Rect

 n = Rect.rectCount

 square1 = Square(8)

 assert(isinstance(square1, Rect) == True)

 assert(Rect.rectCount == n+1)

 assert(not isinstance(r3, Square))

 # continued on next page!

2

 assert(str([square1]) == '[<Square with side length of 8>]')

 assert(square1.width == square1.height == 8)

 assert(square1.getArea() == 64)

 # makeTallRect is a method only for Squares, not Rects, and it returns

 # a Rect with the same width as the square but twice the height:

 assert('makeTallRect' not in dir(Rect)) # not defined in Rect

 r4 = square1.makeTallRect()

 assert(isinstance(r4, Rect))

 assert(str(r4) == '<8x16 Rect>')

 # getSquare returns a new Square instance that just fits in

 # the given rectangle (so its size is the smaller of the width

 # and height of the Rect):

 r5 = Rect(7, 5)

 square2 = r5.getSquare()

 assert(isinstance(square2, Square))

 assert(str(square2) == '<Square with side length of 5>')

 # makeSquare does not return a new Square. Instead, it mutates

 # the rectangle so that it is square, so its new width and height are

 # equal to the smaller of its current width and height. Note that

 # this does not turn the Rect object into a Square object.

 r6 = Rect(7, 5)

 assert(r6.makeSquare() == None) # the method returns None!

 assert(isinstance(r6, Rect))

 assert(str(r6) == '<5x5 Rect>')

 # finally, a (silly) method (note how it is being called

 # in two different ways here):

 assert(Square(1).amazing() == 'yes!')

 assert(Square.amazing() == 'yes!')

 print('passed!')

