CMU 15-112 Spring 2016 Homework 2 Practice
(Due never)
- Do not use strings, lists, or recursion this week.
- Do not hardcode the test cases in your solutions.
- mostFrequentDigit(n)
- isRotation(x, y)
- hasOnlyOddDigits(n)
- longestDigitRun(n)
- nthPalindromicPrime(n)
- nthLeftTruncatablePrime(n)
- nthPowerfulNumber(n)
- countingPrimes
- findZerosWithBisection
- And More!
-
mostFrequentDigit(n)
Write the function mostFrequentDigit(n), that takes a non-negative integer n and returns the digit from 0 to 9 that occurs most frequently in it, with ties going to the smaller digit.
-
isRotation(x, y)
Write the function isRotation(x, y) that takes two non-negative integers x and y and returns True if x is a rotation of the digits of y and False otherwise. For example,
3412 is a rotation of 1234, and 321 (with an implicit leading 0) is a rotation of 3210. Any number is a rotation of itself.
-
hasOnlyOddDigits(n)
Write the function hasOnlyOddDigits(n) that takes a possibly-negative integer n and returns True if n only has odd digits, and False otherwise (that is, if it has any even digits).
-
longestDigitRun(n)
Write the function longestDigitRun(n) that takes a possibly-negative int value n and returns the digit that has the longest consecutive run, or the smallest such digit if there is a tie. So, longestDigitRun(117773732) returns 7 (because there is a run of 3 consecutive 7's), as does longestDigitRun(-677886).
-
nthPalindromicPrime(n)
Write the function nthPalindromicPrime(n). See
here
for details. So nthPalindromicPrime(0) returns 2, and nthPalindromicPrime(10) returns 313.
-
nthLeftTruncatablePrime(n)
Write the function nthLeftTruncatablePrime(n). See
here
for details. So nthLeftTruncatablePrime(0) returns 2, and nthLeftTruncatablePrime(10) returns 53.
-
nthPowerfulNumber(n)
Write the function nthPowerfulNumber(n). See
here
for details. So nthPowerfulNumber(0) returns 1, and nthPowerfulNumber(10) returns 64.
-
countingPrimes
Do the "Counting Primes" problem
here.
-
findZerosWithBisection
Do the "Find Zeros With Bisection" problem
here.
-
And More!
You can find even more loops-and-conditional problems
here.