CMU 15-112: Fundamentals of Programming and Computer Science
Class Notes: Functions Redux (part 2)


  1. Keyword args (**kwargs)
  2. Functions inside functions
  3. Closures + Non-local variables
  4. Non-local variables fail on setting (use nonlocal)
  5. Functions that return functions
  6. Function decorators

  1. Keyword args (**kwargs)  
    def f(x=1, y=2): return (x,y)
    print(f()) # (1, 2)
    print(f(3)) # (3, 2)
    print(f(y=3)) # (1, 3) [here is where we use a keyword arg]
    
    def f(x, **kwargs): return (x, kwargs)
    print(f(1)) # (1, { })
    print(f(2, y=3, z=4)) # (2, {'z': 4, 'y': 3})

  2. Functions inside functions  
    def f(L):
        def squared(x): return x**2
        return [squared(x) for x in L]
    print(f(range(5)))
    try:
        print(squared(5))
    except:
        print("squared is not defined outside f")

  3. Closures + Non-local variables  
    def f(L):
        myMap = dict()
        def squared(x):
            result = x**2
            myMap[x] = result
            return result
        squaredList = [squared(x) for x in L]
        return myMap
    print(f(range(5)))

  4. Non-local variables fail on setting (use nonlocal)  
    def brokenF(L):
        lastX = 0
        def squared(x):
            result = x**2
            lastX = x
            return result
        squaredList = [squared(x) for x in L]
        return lastX
    print(brokenF(range(5)))
    
    def fixedF(L):
        lastX = 0
        def squared(x):
            nonlocal lastX
            result = x**2
            lastX = x
            return result
        squaredList = [squared(x) for x in L]
        return lastX
    print(fixedF(range(5)))

  5. Functions that return functions  
    def derivativeFn(f):
        def g(x):
            h = 10**-5
            return (f(x+h) - f(x))/h
        return g
    
    def f(x): return 5*x**3 + 10
    fprime1 = derivativeFn(f)
    fprime2 = derivativeFn(fprime1)
    print(f(3))    # 145, 5*x**3 + 10 evaluated at x == 3
    print(fprime1(3)) # about 135, 15*x**2 evaluated at x == 3
    print(fprime2(3)) # about 90, 30*x evaluated at x == 3

  6. Function decorators  
    @derivativeFn
    def h(x): return 5*x**3 + 10
    print(h(3)) # 135, matches fprime1 from above.