15-112: Fundamentals of Programming and Computer Science OCaml Seminar

1. Intro to OCaml

OCaml is a language with a great deal of functional programming. To understand what that means, its
best to juxtapose it against imperative programming;:

e Imperative programming often deals with memory, and has a lot of destructive modification. Func-
tional programming doesn’t, and in fact avoids any functions that have “side effects” (aliasing,
printing, etc.)

e Imperative programming primarily uses loops. Functional programming primarily uses recursion.

e Imperative programming is all about changing the program state with a sequence of commands to
reach some desired effect. Functional programming is all about evaluating a bunch of expressions, in
a practically mathematical way.

e In imperative programming functions are often treated as second-class objects, meaning you can’t
manipulate them or use them in expressions the way you can with say integers or strings. In func-
tional programming, functions are first-class objects, meaning that you can.

OCaml is not purely functional, just like how C++ is not purely imperative, but we will avoid discussing
most of OCaml’s imperative features.

To install OCaml, go to this link.

Once you have installed it, you can open an OCaml interpreter by going to the terminal and typing
ocaml. From there you can directly type in OCaml code (though you will have to end each line with two
semicolons ; ;). If you have an OCaml filed named fileName.ml in the same directory, then you can run
it from the OCaml interpreter with the command #use "fileName.ml";;.

Page 1

https://ocaml.org/docs/install.html

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

2. Basic syntax

To declare values in OCaml, we use the syntax let varName = expression, as shown below:

let x = 6
2 let y X *x 7

If we run this code in the interpreter, we will see the following show up:

val x : int = 6
2 val y : int = 42

Notice, we never specified that x and y are ints, OCaml inferred the type. OCaml’s type inference
system will look at any expressions you write and infer the type in a logical way. It will also strictly
enforce these types, so if you try to add an integer to a string, it will complain.

Let bindings can also be used to declare functions:

1 let isEven x =

2 if x mod 2 = 0
3 then true

y else false

s let e4

= isEven 4
7 let eb = isEven 5
1 val isEven : int -> bool = <fun>
> val e4 : bool = true
3 val eb : bool = false

Let bindings can also be used to create local variables. You can use the syntax let v = x in e, where
e is another expression, to declare a variable v which only exists for the purposes of evaluating e. Below
are some examples:

. let hypotenuse (a, b) =

2 let aSquared = a *. a in

3 let bSquared = b *. b in

| sqrt (aSquared +. bSquared)

¢ let h = hypotenuse (3.0, 4.0)

1 val hypotenuse : float * float -> float = <fun>
2 val h : float = 5.

The type float * float -> float means that hypotenuse takes in a product type (a.k.a. a tuple) of
two floats and returns a float. Note that *. and +. are multiplication and addition of floats rater than ints.

You can also provide type annotations, if you wish, to explicitly declare the intended type of a variable/-
function. OCaml will make sure that your code adheres to these types.

i let sayHi (s : string) : string = "Hello " =~ s =~ "IV

s let (s1 : string) "World"
. let (s2 : string) = sayHi sli

1 val sayHi : string -> string = <fun>
2 val 81 : string = "World"
s val s2 : string = "Hello World!"

The type annotation of sayHi means that its input s must be a string, and its output must also be a
string. Note that = is the string concatenation operator.

Page 2

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

3. Recursion and Pattern Matching

To define a recursive function, we must use the rec keyword. Consider the definition of the factorial
function below:

let rec factorial n =
2 if n =0
then 1
A else n * (factorial (n - 1))

s let £f1 = factorial 6

1 val factorial : int -> int = <fun>
> val f£1 : int = 720

Instead of using the if condition then el else e2 syntax, we can use something else called pattern
matching. Pattern matching takes in an expression and matches it to one of several patterns and returns
the corresponding code.

Below, factorial is re-written using a very simple example of pattern matching. In this case, there are two
patterns: 0, which will match only if n is 0, and _ (called a wildcard) which always matches.

1 let rec factorial2 n =

2 match n with

3 0o -> 1

| | _ ->n * (factorial (n - 1))

Pattern matching becomes more useful when we introduce types which have patterns. One of these is
option types. The type int option has two patterns, meaning that if v : int option then v = None
or v = Some x where x : int. Below is an example of a function that uses pattern matching to handle
these cases of option types.

1 let incrementOption a = match a with
2 None -> Some 1
3 | (Some x) -> Some (x + 1)

s let ol = incrementOption (None)

s let 02 = incrementOption (Some 41)

1 val incrementOption : int option -> int option = <fun>
2 val ol : int option = Some 1

s val 02 : int option = Some 42

Below is another example that uses pattern matching to identify cases within a tuple of type int * string * int
representing a simple mathematical expression. If it is well formed, it returns the result as an option type.
Otherwise (i.e. zero division or an unknown operator), it returns None.

1 let simpleEval t = match t with
2 (x, "+", y) -> Some (x + y)
| (x, "-", y) -> Some (x - y)

| (x, "*", y) -> Some (x * y)
5 | (_, "/", 0) -> None

| (x, "/", y) -> Some (x / y)

| _ -> None
o let el = simpleEval (15, "+", 112)
o let e2 = simpleEval (7, "/", 0)
i1 let e3 = simpleEval (100, "/", 4)
> let e4 = simpleEval (8, "$", 6)

1 val simpleEval : int * string * int -> int option = <fun>
> val el : int option = Some 127

s val e2 : int option = None

+ val e3 : int option = Some 25

s val e4 : int option = None

Page 3

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

4. Algebraic Datatypes

Algabraic datatypes are “composites” of other types. You have already seen two types of algabraic
datatypes: tuples and option types.

Another is lists. Int lists have two patterns: []1 (a.k.a. nil), the empty list, and x: :rest, where x : int
is the first element of the list and rest : int list is the remaining elements of the list. We can think
of the list [1; 2; 3] as 1::2::3::[]. Below is a function that uses pattern matching on lists to obtain
the sum of a list.

1 let rec sum 1 = match 1 with

2 [l -> 0

; | (x :: rest) -> x + (sum rest)
4

s let s1 = sum []

s let 82 = sum [1; 5; 1; 1; 2]

1 val sum : int list -> int = <fun>
> val s1 : int = O
3 val s2 : dint = 10

Another example: this function takes in a list in the form [a; b; c; d; ...] andreturns [axb; c*d;

let rec multiplyAdjacent 1 = match 1 with
1 -> 10
3 | [X] -> [X]
1 | (x::y::rest) -> (x * y)::(multiplyAdjacent rest)

N

¢ let al = multiplyAdjacent [1; 2; 3; 4; 5; 6; 7; 8, 9]

1 val multiplyAdjacent : int list -> int list = <fun>
> val al : int 1list = [2; 12; 30; 56; 9]

You can also define your own algabraic datatypes. Consider the point type defined below. It has four

patterns: Origin, Polar (radius, angle), Cartesian(x, y), and Midpoint (pl, p2):
1 type point = Origin

| Polar of float * float
|

|

N

Cartesian of float * float
Midpoint of point * point

(Notice that one of these patterns, Midpoint, takes in values of type point. This means that the type is
a recursive type, just like lists!)

We can pattern match on values of type point just like with tuples or lists or option types. The example
below takes in a point and returns its distance to the origin:

let rec distance (p : point) : float = match p with
Origin -> 0.0
; | Polar (radius, _) -> radius
| | Cartesian (x, y) -> Float.sqrt (x *. x +. y *. y)
| Midpoint (pl, p2) -> ((distance pl) +. (distance p2)) /. 2.0

N

7 let d1 = distance Origin

s let d2 = distance (Polar (4.5, 2.1))

o let d3 = distance (Cartesian (3.0, 4.0))

o let d4 = distance (Midpoint (Origin, Polar (2.0, 0.0)))

1 val distance : point -> float = <fun>
> val d1 : float = 0.

s val d2 : float = 4.5

i val d3 : float =
s val d4 : float =

= O

Page 4

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

5. Higher Order Functions

Before moving on, its worth noting that you can define a function without binding it to a name. This
kind of expression is known as a lambda function. In the example below, a function is defined with the
syntax fun x -> e and immediately called on an input, without ever storing the function with a variable
name.

1 let y = (fun x -> x * x - 1) 5
1 val y : int = 24

It is possible to define functions that take in a function or return a function (these are called Higher
Order Functions). The example below takes in a function f of type int -> int as well as an int x, and
calls £ on x twice:

i let applyTwice ((f : int -> int), (x : int)) : int = f (£ x)
> let a = applyTwice ((fun x -> x + 1), 5)
s let b = applyTwice ((fun x -> x * 2), 8)

1 val applyTwice : (int -> int) * int -> int = <fun>
2 val a : int =7
s val b : int = 32

Its also possible to have functions take in their arguments differently. So far, we have had functions with
multiple arguments take them in as a tuple. Its possible to instead use a trick called currying which
allows the function to take in its arguments 1-at-a-time. If a curried function £ has two inputs x and y, and
it is called only with x, then it will return a function that takes in a value for y before returning the output.

The example below does the same as applyTwice, except that it is curried and it calls £ on x three times.
Notice that the function can be called with both inputs at once, or with only one input in which case it
returns a function.

1 let applyThrice (f : int -> int) (x : int) : int = £ (f (f x))
> let addThree = applyThrice (fun x -> x + 1)
s let a = addThree 10

. let b = applyThrice (fun x -> x * 2) 10
1 val applyThrice : (int -> int) -> int -> int = <fun>
2> val addThree : int -> int = <fun>

3 let a : int = 13
. let b : int = 80

The example below extends this by taking in an integer n and returning a function that applies £ n times:

1 let rec applyN (f : int -> int) (n : int) =
2 if n = 0

3 then fun x -> x

| else fun x -> f (applyN f (n - 1) x)

5 let x = applyN (fun x -> x *x 2) 4 10

1 val applyN : (int -> int) -> int -> int -> int = <fun>
2 val x : int = 160

There are also several built-in Higher Order Functions. They are best explained by observing what they
do in the examples below:

1 let 1 = [1; 2; 3; 4; 5; 6; 7; 8]

2 let m = List.map (fun x -> x * x) 1

3 let n = List.filter (fun x -> (x mod 3) = 2) 1

+ let o = List.fold_left (fun x y -> x + y) 0 1

1 val 1 int 1list = [1; 2; 3; 4; 5; 6; 7; 8]

> val m int list = [1; 4; 9; 16; 25; 36; 49; 64]
s val n int 1list = [2; 5; 8]

. val o int = 36

Page 5

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

6. Polymorphism

It is possible to write generic functions in OCaml that operate on values of more than one type. Consider
taking the length of the list. It would suck if you had to write a function intListLen : int list -> int
for int lists, another stringlistLen : string list -> int for string lists, and so on for every type.
Instead, OCaml has one length function List.length : ’a list -> int where ’a (pronounced “alpha”)
stands in for any type. Consider the example below:

1 1let rec doublelList 1 = match 1 with
2 1 -> 11

3 | (x::rest) -> x::x::(doublelist rest)

5 let d1 = doublelList [1; 2; 3]
¢ let d2 = doubleList [(3, ’a’); (5, ’b’)]
1 val doublelList : ’a 1list -> ’a list = <fun>

> val d1 : dint list = [1; 1; 2; 2; 3; 3]
; val d2 : (int * char) 1list = [(3, ’a’); (3, ’a’); (5, ’b’); (5, ’b’)]

When d1 is evaluated, ’a = int, but when d2 is evaluated, ’a = int * char.

For another example, consider the function below which finds the maximum value of a list according to
some comparison metric provided.

let rec polyMax (cmp : ’a -> int) default 1 = match 1 with
[1 -> default
| (x::rest) ->
let res = polyMax cmp default rest in
if (cmp x) > (cmp res) then x else res

N

r let 11 [13; -1; 21; 1; -89; 2; -3; -34; 5; 8; 55]
s let 12 = ["0Oh"; "what"; "a"; "beautiful"; "morning"]
o let maxl = polyMax (fun x -> x) 0 11

0 let max2 polyMax Int.abs 0 11

11 let max3 = polyMax String.length "" 12

. val polyMax : (’a -> int) -> ’a -> ’a list -> ’a = <fun>

> val 11 : int 1list = [13; -1; 21; 1; -89; 2; -3; -34; 5; 8; 55

3 val 12 : string list = ["Oh"; "what"; "a"; "beautiful"; "morning"]
+ val maxl : int = b5

5 val max2 : int = -89

¢ val max3 : string = "beautiful"

Notice how it can find the “largest” value in a list of any type based on whatever metric is provided.
All that is required is that the input to the cmp function, the default value, and the values within the
list all have the same type. Consider the further examples below which use the fact that polyMax is curried.

largestSum uses polyMax to find the 1D list within a 2D list of integers with the largest sum.
biggestDifference uses polyMax to find the tuple within a int * int list with the largest difference
between the two elements.

1 let largestSum = polyMax (List.fold_left (fun x y -> x + y) 0) []

> let biggestDifference = polyMax (fun (x, y) -> Int.abs (y - x)) (0, 0)
5 let max4 = largestSum [[1; 2; 3]; [4]; [-5; 6; -711;;

+ let maxb = biggestDifference [(1, 5); (1, 1); (2, 4); (3, 8)]

1 val largestSum : int 1list 1list -> int list = <fun>

> val biggestDifference : (int * int) list -> int * int = <fun>
3 val max4 : int 1list = [1; 2; 3]

. val max5 : int * int = (3, 8)

Page 6

15-112: Fundamentals of Programming and Computer Science OCaml Seminar

Combined Example: Files and Folders

Combining several of the ideas so far, below is an example of a recursive datatype representing files and
folders. The type has two patterns: File (which contains the file’s name and size) and Folder (which
contains the folder’s name and a list of its contents, which could also be files or folders).

type storage = File of string * int
| Folder of string * (storage list)

Suppose we wanted to write the listFiles function from lecture. We could do it by casing on whether or
not the current object is a File or a Folder. If its a File, return its name. If its a folder, we could get the
file names of every file inside the list by recursively calling listFiles on each of them, then add all the lists
together, then put the current folder name in front of each file name. Those operations are done in three
steps:

e Use map to apply the listFiles function recursively to each item in the list
e Use List.fold_left to concatenate the lists (with the @ operator)
e Use map to pre-pend each string with the folder name

let rec listFiles s = match s with

File (name, size) -> [namel
| Folder (name, contents) ->

let sublLists = List.map listFiles contents in
let combined = List.fold_left (fun x y -> x @ y) [] subLists in
let prefixed = List.map (fun x -> name ~ "/" ~ x) combined in

prefixed

let fil = File ("Hello.py", 42)
let fi2 = File ("World.cpp", 100)
let £fi3 = File ("Yay.txt", 15)
let fi4 = File ("Foo.txt", 112)

s let fol = Folder ("B", [fil; £i2])

let fo2 = Folder("C", [fi4])

5 let fo3 = Folder ("A", [fol; fi3; fo2])
; let paths = listFiles fo3

val listFiles : storage -> string list = <fun>

s val paths : string list =

["A/B/Hello.py"; "A/B/World.cpp"; "A/Yay.txt"; "A/C/Foo.txt"]

Other Stuff

Some other things worth looking into if you want to know more about OCaml:

e Records

Exceptions

Modules (Structures, Signatures and Functors)

e Lazy programming

Imperative programming in OCaml (semicolons, printing, references, loops, arrays)

The OCaml documentation (linked here)| explains a lot of these quite well.

Page 7

https://ocaml.org/learn/tutorials/

