
fullName:_______________________________andrewID:_______________________________
recitationLetter:______ Lecture (1, 2, or 3)_____

Quiz9 version A
You MUST stop writing and hand in this entire quiz when instructed in lecture.

You may not unstaple any pages.
You may not use your own scrap paper. If you must use additional scrap paper, raise
your hand and we will provide some. You must hand this in with your paper quiz, and
we will not grade it.
Failure to hand in an intact quiz will be considered cheating. Discussing the quiz with
anyone in any way, even briefly, is cheating.
Write "q" next to this line for one bonus point.
You may not use any concepts we have not covered in the notes this semester. We
may test your code using additional test cases. Do not hardcode. Assume
almostEqual(x, y) and roundHalfUp(n) are both supplied for you. You must write all
other helper functions you wish to use.

CT1: Code Tracing [15pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

def ct1(s):

 if len(s) <= 1:

 return s

 else:

 i = len(s)//2

 return s[i] + ct1(s[i+1:]) + ct1(s[:i])

print(ct1('35126'))

CT2: Code Tracing [15pts]
Indicate what the following code prints. Place your answers (and nothing else) in the box
below.

def ct2(n):

 if n < 10:

 return [n]

 else:

 return [n%10] + ct2(n//100)

print(ct2(12345))

Free Response 1: secondLargest(L) [35pts]
Note: for all FR's on this quiz, you must not use for or while loops. Solutions
that use loops
will earn zero points.

You also must not use any builtin functions or methods
except those that run in O(1) time
with respect to the length of the problem's input.
Penalties for slower builtins (such as
min(L) and max(L)) range from -50% to zero credit.
List slicing is allowed. Also, checking
the length of a list or string is O(1).

Write the recursive function secondLargest(L) that takes a list of
integers and returns the
second-largest
integer in the list, without sorting the list. Thus:

 assert(secondLargest([2,5,3,4,1]) == 4)

If the list has duplicate values, it is possible for the largest and
second-largest values to be
the same. Thus:
 assert(secondLargest([6,5,6,6,6]) == 6)

If the list does not have a second-largest value, return None. Thus:
 assert(secondLargest([1]) == None)

 assert(secondLargest([]) == None)

Hint: you may find it helpful to use a wrapper function.

Free Response 2: longestVowelRun(s) [35pts]
Note: for all FR's on this quiz, you must not use for or while loops. Solutions
that use loops
will earn zero points.

You also must not use any builtin functions or methods
except those that run in O(1) time
with respect to the length of the problem's input.
Penalties for slower builtins (like calling
s.lower() or s.isupper()) range from -50% to zero credit.
String slicing is allowed. Also,
checking the length of a list or string is O(1).

Write the recursive function longestVowelRun(s) that takes a string s and
returns the
length of the longest run of consecutive vowels in s, ignoring
case, where the vowels are A,
E, I, O, and U.

For example:

 assert(longestVowelRun('AbcAeiD aEoa ba') == 4) # aEoa

 assert(longestVowelRun('cnsnts') == 0) # no vowels

 assert(longestVowelRun('aeiouAEIOU') == 10) # all vowels

Hint: we found it very helpful to write the helper function vowelRun(s)
that returns the
vowel run for the string s starting only from the beginning
of s. For example,
vowelRun('abaeiou') returns 1, and vowelRun('daeiou') returns 0,
and vowelRun('aeiobu')
returns 4.

bonusCT: Code Tracing [2pts]
This question is optional. Indicate what the following code prints. Place your answers (and
nothing else) in the box below.

def bonusCt(L):

 def f(L):
 return L if L == [] else [L[0]//2]*2 + f(L[1:])

 if (set(L) == {0}):

 return len(L)

 else:

 return bonusCt(f(L))

print(bonusCt([2,8]))

