Demo 1: Google Scholar Source Searching

In this demo, we are going to automate a Google Scholar search. The
search will input whatever text you want to look for, and pull up new
tabs of the first n search results, where you can choose n.

We will need to add one import in this case, shown down below.
from selenium.webdriver.common.keys import Keys
Keys will allow us to send non-string keys to text input boxes.

Now, let’s create a new function called googleScholarSearch. It will
take in a string argument of the text to be searched, and an integer
argument that is the number of articles/links to be pulled up.

def googleScholarSearch (searchText, numberOfArticles):

In this demo, we need to (a) pull up Google Scholar, (b) input a
string into the search bar and submit it using the enter key, (c)
find the first <numberOfArticle> links in the page and parse through
them to make sure they are articles, and (d) open new tabs and
iterate through the article links to open all of them.

Pulling up Google Scholar is easy, and we’ll maximize the Selenium
window while we’re at it.

driver.maximize window ()
driver.get ("https://scholar.google.com/")

Now, we need to find the search bar element. We’ll pull up the
inspect tool for Google Scholar. We know that the search bar requires
user input and that it is a text input, so we can CTRL + F search for
an input tag. As we look through the <input> elements, remember that
the type has to be “text” and that hovering over the element in the
inspect tool will show which element it corresponds to on the page.
We eventually find that the search bar element contains the following
code:

<input type="text" class="gs in txt gs in ac" name="g" value=""
id="gs hdr tsi" size="50" maxlength="2048" autocapitalize="off"
autocomplete="o0ff" aria-label="Search" dir="1tr">

A\Y ”

The name of the element is so we will use that to find the search

q
bar element using Selenium.

searchBar = driver.find element (By.NAME, “gq”)

We now want to send and enter the text we want to search. Similar to
the previous demo, we can do this by sending searchText as keys, then
sending the “enter” key. However, the enter key cannot be sent using
strings, which is where we will use Keys.

searchBar.send keys (searchText)
searchBar.send keys (Keys.RETURN)

Now, we need to find the first n articles that Google Scholar pulls
up. We can do this by creating a list, then filling it with links.
The <a> tag in HTML corresponds to hyperlink elements, so we can
search by tag name to find the article hyperlink elements. The
element itself will not be the link, so using get attribute (“href”)
we can find the link attached to the element. Additionally, not every
hyperlink will lead to an article. Some may just lead back to Google
Scholar and some may not include links, so we need to make sure that
these are proper links before including them in our searchResults
list. Using this code, we were able to loop through all links to find
the actual informative ones.

for element in results:
link = element.get attribute ("href")
if (link != None and ("google" not in link or
"books.google" in
link and "https://" in 1link):
articlelLinks.append (link)

However, we can run into a problem. What if the number of links on
the first search result page i1s less than the number of articles we
want? To fix this, we’ll add more to the list searchResults. We have
to automate moving to the next page of Google Scholar, so we will
find the element that does this and click it whenever we need more
articles. The type of this element in HTML should be <a>, but that
doesn’t assist in looking for it. However, the button should have a
link, so we can CTRL + F the inspect tool and search “href”. Again,
hovering over each element will highlight the part of the webpage it
corresponds to, so by going through each instance of “href” we
eventually find the link to the “next” button. We will have to go
into this subsection and copy the XPath of the element. With

this, we can now go to the next page of search results. Here’s the
complete code for this section:

results= []

—
[—

articlelinks

nextPagePath
'/html/body/div/div[10]/div[2]/div[3]/div[3]/div[2]/center/tabl
e/tbody/tr/td[12]/a/span'

while len(articlelLinks) < numberOfArticles:
results = driver.find elements (By.TAG NAME, "a")
for element in results:
link = element.get attribute ("href")
if (link != None and("google" not in link or
"books.google" in
link) and "https://"™ in link):
articlelLinks.append (link)
nextButton = driver.find element (By.XPATH, nextPagePath)
nextButton.click ()

Note: nextButton has to be called on every iteration because once the
page changes, the element is no longer the same. The XPath for button
still works because it’s in the same location, but if the location
were to change with the new page, this code would NOT WORK.

Now, using what we have, we can start to open the search results. We
will do this with a for loop, using numberOfArticles as a range. Each
result will be opened in a new tab, so there will be new code here!
driver.execute script() will execute the JavaScript code that is put
in as an argument, and driver.switch to windows (handle) and
driver.window_ handles (index) are described in the Basic Selenium
Syntax section of this document. The following code is what we used:

for 1 in range (numberOfArticles):
driver.execute_ script ("window.open(''"');")
driver.switch to.window(driver.window handles[i + 1])
driver.get (articlelLinks([i])

The complete code for this demo is below.
def googleScholarSearch (searchText, numberOfArticles):

driver.maximize window ()
driver.get ("https://scholar.google.com/")

searchBar = driver.find element (By.NAME, "g")

searchBar.send keys (searchText)
searchBar.send keys (Keys.RETURN)

results = []
articlelLinks

—
[—

nextPagePath
'/html/body/div/div([10]/div[2]/div[3]/div[3]/div[2]/center
/table/tbody/tr/td[12]/a/span’

while len(articlelinks) < numberOfArticles:
results = driver.find elements (By.TAG NAME, "a")
for element in results:
link = element.get attribute ("href")

if (link != None and
("google" not in link or "books.google" in
link)
and "https://" in 1link):
articlelLinks.append (link)
nextButton = driver.find element (By.XPATH,
nextPagePath)

nextButton.click ()

for 1 in range(len(articlelinks)):
driver.execute script ("window.open('"');")
driver.switch to.window(driver.window handles[i + 1])
driver.get (articlelLinks([i])

return

googleScholarSearch ("your-text", <integer input>)

NOTE: if a link prompts downloading of a file, running this code will
automatically download the file.

By running this code and modifying “your-text” and <integer input>,
you can find scholarly articles on a topic of your choice!

