Brief Selenium and HTML Overview

Selenium is a Python module that is able to automate actions in
browsers such as Google Chrome, Firefox, Microsoft Edge, or Safari.

Selenium uses a web driver object and is able to pick out and
manipulate html elements from a web browser, so this segment will
briefly explain the parts of HTML needed to use Selenium. You won’t
need to know how to code in HTML, but you will need to be able to
identify certain elements in order to call them in Python.

The easiest way to find HTML elements in a web page is using the
inspect element. To open it, right click on your web browser and
click “Inspect.” This should pull up a frame with HTML code on the
right side of your screen. By hovering over different segments of
code, you can see which HTML elements it includes. A screenshot of
the inspect element is attached below.

“ [R O] GEements Comsole Sources Network Performance Memory ~Application Securty Lighthouse » @2 B1 | £

u “ Styles »
<html lang="en" dir="1ltr">

» chead>..</head> thov .cls

¥ <body data-controller="viewport-toggle” style="padding-top: @px;"> element.
Search projects Q <1-- Accessibility: this link should always be the first piece of content inside the body--> style {
¥

Skip to main content

<button type="button” class="button button--primary button--suitch-to-mobile hidden” data-viewport-toggle-target="suitc _typogr.
hToMlobile” data-action="viewport-toggle#suitchTotiobile”> Switch to mobile version </button> hliFirst-
. > <div id="sticky-notifications” class="stick-to-top js-stick-to-top”>.</div> child,
Selenlum 4,8,0 <div data-html-include="/_includes/flash-messages/"> </div> Zilﬁrit
<div data-html-include="/_includes/session-notifications/"></div> h3:First-
> cheader class="site-header ">.</header> child,
pip install selenium @® ¥ <div class="mobile-search”s../div> hd:first-
¥<main id="content"> child,
<div data-html-include="/_includes/administer-project- include/selenium™></div> ’ZiIETSt
‘ 9 | renemen > <div class="banner">..</div> h6- Finst-
> <div class="horizontal-section horizontal-section--grey horizontal-section--thin">.</div> child,
¥div data-controller="project-tabs” data-project-tabs-content="description”> hrshl,
Released: Jan 23,2023 v<div class="tabs-container”> freh2
¥<div class="vertical-tabs"> e
><div class="vertical-tabs_tabs">.</div> hrshs,
v<div class="vertical-tabs_panel™> hrsh6 {
<!-- mobile menu -->
No project description provided »<nav aria-label="Navigation for selenium">..</nav> Pﬂddi"f'
¥<div id="description” data-project-tabs-target="content" class="vertical-tabs_content" role="tabpanel” aria- o
1abelledby-"description-tab mobile-description-tab” tabindex="-1" style="display: block;">) ;

<h2 class="page-title">Project description</h2> == $0
i inti > R iption” : _typogr..
Project description /:d)\/ class="project-description”>..</div> . .page-title

- body main#content div divtabs-container div.vertical-tabs div.vertical-tabs_panel div#description.vertical-tabs_content h2.page-title

Font-

© Project details

i Console What'sNew X

Highlights from the Chrome 109 update
*D Release history
Recorder panel updates

New step context menu, option to copy a single step from a script, remove the first navigation
& Download files step, and more.
Improved JavaScript debugging .

. L. Inline preview for WeakRef, correct preview of shadowed inline variable, and more.
Project description

Fn b b ale far TonACarint

The attributes Selenium uses to identify HTML files are their ID,
name, class name, XPath, CSS selector, link text, partial link text,
and tag name.

All html code begins with a tag, then adds attributes. The example on
the next page is a part of the code from one of the elements of the
main Selenium webpage, and will be explained in further detail.

<input id= “mobile-search” class= “search-form search” type=

”

“text” name= “g

The tag, <input>, is highlighted in light blue. Every HTML element
has a tag. Tags mark the beginning and ending of an HTML element, and
can be used to find elements in Selenium. However, finding elements
by tag name is not recommended in most cases as the same tags are
used for multiple elements, making it difficult to find the specific
element you want. Tags that will be used in the later demos are
<div>, or division, <a>, which means hyperlink, and <input>, which
means the element takes an external input. When searching for a tag
name in Selenium, use it as a string. With the above example, you
would use “input” to search.

The other elements—ID, class, type, and name—are attributes. ID,
name, and class are commonly used to find elements in Selenium.
However, using class to search for elements was inconsistent when the
113 TA’s attempted it. You would use the string “mobile-search” to
find the example element in Selenium.

XPath is the most consistent method to find elements with Selenium,
but it is very inflexible. The XPath is the exact path from the top
of the HTML code to a specific element, and will not work correctly
if the path is incorrect. To find the XPath of an element, you must
go into the inspect tool, and find the specific element you are
looking for. As you hover your mouse over an element, it should be
highlighted on the left side of the screen that displays the webpage.
Once you find the element, right click it. In the drop-down menu,
hover over “Copy” and press “Copy full XPath” to copy the XPath of
that element. Looking for an element in the inspect tool can be
tedious, especially for longer and more complex web pages, which is
why ID, name, and class are used more often.
“/html/body/main/div([4]/div/div/div[2]/nav/ul/1i[2]/a” is an example
XPath that could be used in Selenium.

Link text and partial link text search are exactly what they sound
like. You put the link name or a part of the link name in to search
for it. For example, on the Selenium webpage, searching for an
element with link text “Project details” would select the hyperlink
element with that display name. Partial text works the same way,
except it only requires a part of the link text.

CSS selector requires tag name and one of the attributes of the
element being searched for. CSS selector will not be utilized in the
demos, so we won’t go as in-depth into it. A table for CSS searcher

syntax is below, taken from

https://www.guru99.com/locators—-in-selenium—-ide.html.
Method Target Syntax Example
Tagand ID css=tagkid css=input#email
Tag and Class css=tag.class css=input.inputtext
Tag and Attribute css=taglattribute=value] css=input[name=lastName]
Tag, Class, and Attribute css=tag class| attribute=value] css=input.inputtext[tabindex=1]

Actual syntax for element searching will be discussed later, but this
is to give you the base knowledge for HTML needed to use Selenium at
this level.

Imports

Here’s a few Selenium imports that will be used in the demos:

from selenium.webdriver.common.by import By
By allows us to search for elements in Selenium using different
attributes.

from selenium.webdriver.common.keys import Keys
Keys will allow us to send non-string keys to text input boxes.

from selenium.webdriver.common.action chains import
ActionChains
ActionChains allow us to create action chains (duh).

from selenium.webdriver.support.ui import WebDriverWait

from selenium.webdriver.support import expected conditions as
EC
WebDriverWait and EC allow us to perform explicit waits, where the
webdriver checks if an element is in the driver and waits until it
appears.

Basic Selenium Syntax

Here’s a list of the basic Selenium commands used in the demos.

If you’re interested in more complicated automation, we’ve included a
list of suggestions at the end of this section.

driver.get (“<link>")

https://www.guru99.com/locators-in-selenium-ide.html

This command takes a link in the form of a string as an argument, and
opens the link in the current tab that Selenium is controlling.

driver.quit ()
This command takes no argument and will close the automated browser
window.

driver.back ()
This command brings you to the previous webpage opened—it functions
as the left arrow in the top left corner of the browser, and will not
raise an error.

driver.forward ()
This command functions as the right arrow in the top left corner of
the browser. It will not raise an error.

driver.maximize window ()
This command maximizes the window that Selenium pulls up.

driver.window handles
This is a list of all the current window handles in the
Selenium-controlled browser. Taking specific indices will return the
string name of that tab, so driver.window handles[0] will return the
string name of the leftmost tab.

driver.switch to.window (“<window handle name>")
This command will switch to the window in Selenium with the same name
as the string <window handle name>.

driver.execute script (“<script>")
This command will execute the JavaScript command in <script>. In the
demos, this was only used to open new tabs. The corresponding
JavaScript is "window.open('');".

driver.find element (By.<method>, "“<string argument>")
This command will return the first HTML element that has the
attributes specified on the current page Selenium has pulled up.
<method> can be filled by any of the options discussed in the HTML
overview: ID (By.ID), name (By.NAME), class name (By.CLASS NAME),
XPath (By.XPATH), CSS selector (By.CSS SELECTOR), link text
(By.LINK TEXT), partial link text (By.PARTIAL LINK TEXT), and tag
name (By.TAG NAME). The way to find the string argument is defined in
the HTML overview in the beginning of this writeup, and is also
described in the demos. Selenium will return an error if it does not
find any element that matches the specifications.

driver.find elements (By.<method>, <string argument>)
This command is the same as driver.find element except it returns a
list of all elements on the current page Selenium has pulled up that
contain the attributes specified. Selenium will return an empty list
if it does not find any element that matches the specifications.

<element name>.click ()
This command will attempt to click the current element stored in
<element name>. If it is not a clickable/interactable element,
Selenium will raise an error message.

<element name>.send keys (<keys>)
This command will attempt to send the keys in the argument to the
current element stored in <element name>. If the element cannot have
keys sent to it, Selenium will raise an error message. <keys> can be a
string with the text that the user wants to put into the element, or
keys using the object Keys which was imported. The keys that are not
string values must be accessed using Keys, including the enter key
(Keys .RETURN), backspace key (Keys.BACKSPACE), arrow keys, and
others. This is shown more clearly in the demos.

<element name>.get attribute (“<attribute name>")
This command returns a string of the attribute in <attribute name>
from the element stored in <element name>. For example, using
element.get attribute(“name”) will return the name of the element as
a string.

WebDriverWait (driver, <time in

seconds>) .until (EC.presence of element located((By.<method>,

"<string argument>")))
This is an ugly piece of code. However, this is an incredibly useful
command. This command will wait up to the integer <time in seconds>
until the driver has located an element with (By.<method>, “<string
argument>”). Once it has been located, it will return the element.
However, Selenium will raise an error if <time in seconds> has passed
and there is no element that matches the specifications. This is
useful when trying to automate web pages that load slowly.

<action name> = ActionChains (driver)
This creates an action chain! From there, you can add commands to the
action chain, such as <action name>.move to element (<element>) or
<action name>.click() .

<action name>.perform()

This performs the actions stored in the action chain. This is similar
to a function in that you can call it multiple times and will not
change.

Overall, this is very surface-level stuff that you can do in
Selenium.

More Selenium features can be found at
https: selenium-pvthon.readthedocs.io/api.html.

Additionally, the YouTube tutorials from Tech With Tim can be useful
for extra demos. Here’s the link to the first video in his series:
https://www.voutube.com/watch?v=Xjv1sY630Uc&list=PI,.zMcBGfZ04-n40rBl1Xa
JO0aklbemvligumQ&index=1.

https://selenium-python.readthedocs.io/api.html
https://www.youtube.com/watch?v=Xjv1sY630Uc&list=PLzMcBGfZo4-n40rB1XaJ0ak1bemvlqumQ&index=1
https://www.youtube.com/watch?v=Xjv1sY630Uc&list=PLzMcBGfZo4-n40rB1XaJ0ak1bemvlqumQ&index=1

