
Introduction to Flask - Notes
Demo project -> https://chaosarium.pythonanywhere.com

Code on GitHub -> https://github.com/chaosarium/flask-lecture

Docs -> https://chaosarium.gitbook.io/113-flask

Flask is a Python web framework, i.e. something that lets you build web apps!

One cool thing you can then do is to make different machines talk to each other —
you can even have things written in different languages talk to each

But first, how does the web work? See HTTP if not already familiar.

Files in the repo/zip file
basic contains demo of Flask app setup and basic routes
topiclist contains the demo project
docs is the documentation source
starter_code is where you can start implementing the demo project (or
something else)

HTTP
Stands for Hypertext Transfer Protocol
A standard for how computers should talk to each other through internet
connection, basically
HTTP requests — whenever you want to get information, send message, etc.

An example http request (from Wikipedia):

Here, we see that this is a GET request to www.example.com to request data at / sent
via Mozilla/5.0 etc...

GET / HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*
/*;q=0.8

Accept-Language: en-GB,en;q=0.5

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

https://chaosarium.pythonanywhere.com/
https://github.com/chaosarium/flask-lecture
https://chaosarium.gitbook.io/113-flask

And here's the response

We see a status code 200 , date, time, content type, ..., and the data we got back,
which is some html code.

If you open the inspect panel on your browser and go to the Network tab, chances
are you will see http requests flying around.

(You may also see https somewhere. That's http with encryption)

In the example, we saw a GET request, but there are more. We'll briefly go over the
two most common ones:

GET is usually when you want to... duh get something
POST is when you have data you want to send to the server

These requests can have some "payload". There are many places where you can
include data in the request and in many different formats.

headers is usually for metadata-ish key-value pairs
body is where most of the data is
url params is literally data embedded in the url.

For example, when you do a google search, you see the url looks something
like this: https://www.google.com/search?q=http&newwindow=1 . The params
are:

q which has value http
newwindow which has value 1

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Content-Type: text/html; charset=UTF-8

Content-Length: 155

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

ETag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: bytes

Connection: close

<html>

 <head>

 <title>An Example Page</title>

 </head>

 <body>

 <p>Hello World, this is a very simple HTML document.</p>

 </body>

</html>

Setting up a Flask app
Create a file app.py (usually they call it that and it works)

Of course you import a bunch of things

This line creates a flask app

And this lets you run the app when you run python app.py in terminal

But wait, we just created an app that doesn't "listen" to anything. We need to define
functions so that it handles http requests like the one we saw earlier.

Here's the code for a function that listens at / and responds by sending hello
world.

Flask uses some sort of function decorator. We already said app = Flask(__name__) ,
so app.route("...") is creating a route for the app. And "/" just means root URL.
Flasks makes it so that return sends our response. In this case we're just sending
text.

Putting it together, we have:

from flask import Flask

from flask import request # now we can also use different HTTP methods

from flask import render_template # for rendering html templates

...

app = Flask(__name__)

if __name__ == '__main__':

 # here, 127.0.0.1 is the IP address for localhost, and port can be though
of the channel at this address?

 app.run(host='127.0.0.1', port = 5000)

 # If you want your app to be available publically, you change the host to
0.0.0.0. Then people in your local network should be able to access your app
via your computer's IP

 # Note that your computer probably doesn't have a public IP, so someone
in, California, for example, won't be able to access your app (unless they go
on CMU VPN(?))

 # If you want your app to be made public everywhere, you need a public
IP.

@app.route("/")

def root_route():

 return "Hello, World!"

More routes
We can do more than just sending back hello world — we can get data from the
request, do something with it, and send back something fancy!

We can have non-root url

We can capture path pattern in url

We can specify the type. Also we are returning some html here

@app.route('/fact/<int:n>')

We can do something different depending on what type of request we got

from flask import Flask

from flask import request

from flask import render_template

app = Flask(__name__)

@app.route("/")

def root_route():

 return "Hello, World!"

if __name__ == '__main__':

 app.run(host='127.0.0.1', port = 5000)

@app.route('/projects')

def projects():

 return 'The project page'

@app.route('/user/<username>')

def user_profile(username):

 print(username)

 return f'hmm, see console'

def fact_page(n):

 return f'<p style="overflow-wrap: anywhere;">{n}! = {fact(n)}</p>'

@app.route('/getorpost', methods=["GET", "POST"])

def getorpost():

 if request.method == 'POST':

 return "method was POST"

 else:

 return "method was GET"

We can render html file. This example captures name from the request url and puts it
in a sayhello template, which flask will look for in the ./templates directory.

We can return json too

Running a Flask app
There is a way to start a server with the flask command. You also have the option of
enabling debug mode.

or

or you can make the app run when you run the python file by writing:

Example project — a 15113 topic list
Demo link: https://chaosarium.pythonanywhere.com

What we need:

Some database to store data. See database
A home page that displays data (GET)
Places to update data using POST

/add topic
/promote topic

@app.route('/sayhello/<name>')

def sayhello(name):

 return render_template("sayhello.html", name = name)

@app.route("/api")

def api():

 return {

 "foo": "fooo",

 "bar": "barr",

 "quote": "hello world",

 }

flask run

flask --debug run

if __name__ == '__main__':

 app.run(host='127.0.0.1', port = 5000) # this runs it on local network

 # app.run(host='0.0.0.0', port = 5000) # this makes it public

https://chaosarium.pythonanywhere.com/

/reject topic
Some interface to send POST requests
UI design (maybe) (implemented on the stylish-topiclist branch)

Database
Database is a way to store data in a manageable way. By manageable it could mean
structured, scalable, etc.

Technically, you can just use a dictionary to hold data, but notice what happens
when you restart the app—all your data is lost.

One benefit of using a database, therefore, is that you can keep the data no matter
what happens to your python process.

For the sake of this demo, we use TinyDB to keep things simple. You google for
more options.

TinyDB

TinyDB stores data in json format. You can read more about the library on its
website.

Deployment

https://github.com/chaosarium/flask-lecture/tree/stylish-topiclist
https://tinydb.readthedocs.io/en/latest/
https://tinydb.readthedocs.io/en/latest/

PythonAnywhere

The demo app is hosted on PythonAnywhere, which is free and simple to use. To
run your Flask app, do these:

1. Go to PythonAnywhere and register for an account
2. Under Dashboard > Consoles , you can open up a terminal to install

dependencies. For our app, do pip install tinydb
3. Click Web apps , then Add a new web app , then Next
4. Select Flask and use Python 3.10
5. Set a path to where your app is on the remote file system
6. You should now see "Hello from Flask!" in the site that was just created. Start

modifying the python code!

Other options

Vercel: supports continuous deployment from git but doesn't allow writing to
disk
VPS: you'll have to set things up on a server, but it's fun

https://www.pythonanywhere.com/
https://www.pythonanywhere.com/

