Defining the Problem — Machine Learning

How do we make machine learn to do something without explicitely programming it to do
that thing?

Example tasks:

Identify if image contains a cat

Classify handwritten characters

Generate music

Play go

Translation

Write an essay (not for submission of course)

We could programme a computer to do these thigns, but it gets harder the less we know

how to write such programme. (Imagine someone asking you to handcraft a translator)

Consider this trivial task:

We have four-pixel images, and we want to classify themas 1, 7, or L.

Left toright: 7, L, 1, 1

Okay, maybe you wrote a bunch of if else statements and got something to work

What if... new language with other ways of writing 1, 7, L—

Lefttoright: 7, L, 1,1

=] B "I]
| £ r | -. .

| B N :‘u: e | ._'__ P e s
= L - L

...That just broke our programme

Ideas:

e Decision tree?

¢ Neural network!

Overview of Neural Network

— O\l O =T 1O

¢ Intuition for understanding neural network: it resembles how neurons in our brain are

connected

¢ Input: some representations of our data

e Qutput: some predictions based on the input data

Question to ask:

e How can we communicate our goal with the machine?

e How does these neural nodes or layers transmit information from one to the other?

e How does it make predictions and adjust its predictions?

Consider the image below. How do we represent an image so that machine can understand

it?

0000000000000000000000000000
0000000000000000000000000000
0000000000000011111000000000
0000000000111111111000000000
0000000011111110000000000000
0000000011111110000000000000
0000001111111100000000000000
0000111111000000000000000000
0011111100000000000000000000
0011111100000000000000000000
0011111100000000000000000000
1111110000000000000000000000
1111110000000000000000000000
1111110000000000000000000000
1111110011111111111000000000
1111110011111111111000000000
1111111111111111111111100000
1111111111111111111111111000
1111110000000000000111111110
1111110000000000000111111110
1111110000000000000000011111
1111110000000000000000011111
0011110000000000000000011111
0011111100000000000001111111
0011111100000000000001111111
0000111111111111111111111110
0000001111111111111111111000
0000000011111111111110000000]|

We can represent this 6 as some vector/matrix consisted of 0 and 1.

What if my picture has shadows?

o 2 0 DI OO OO0 0 9 8 DO
O 0 0 4 GDIST2I62S5IS51TT S5 61 3 0 O
0 10 16119238255 244 245 243 250 249 255 222 103 10
0 14 170 255 255 244 254 255 253 245 255 249 253 251 124
F 08 255 Z2H P55 251 254 211 141 116 122 215 251 238 265
13217243256 156 33226 52 2 0 10 13232255265
16229252254 4% 12 0 0 T 7 0 TO2IT2E2235
G141 245255212 26 11 9 3 0115236 243 255 137
0 BT 252250248215 60 0 1121252255 248144 &
0 13113 255 255245 255 182 181 248 252 242 208 36 0
1 0 S117251265 241256 247265241162 17 0 7
O 0 0 4 GEFRIFEEMMEIS4ZEIZESIRD 11 O 1
00 & 97255255255 248 P57 2!
0 22 206 252 246251 241100 24113255 245255194 9
D111255242256068 24 0 0 6 39285232230 56
0218251250037 7 11 @ O 0O 2 G2IS5Z50125
0173255256001 9 20 @ 13 3 13182251245 61
0107 251 241 255230 98 55 19118217 248 253 255 52
0 18 146 250 255 247 255 255 255 249 255 240 255 129 O
0 0 23113215255 250 248 255 255 248 248 118 14 12
0 0 6 1 0 52153233255252147 37 O 0O 4
o0 5 &5 0000 D14 1O 6 B O

a2 10 0

55 244 255 1

We can then represent this 8 by some matrix/vector with the rgb values at each pixel

How can we know which output it generates?

a
o

e
]

a

- - - - -]

One common way is to use probability. The output with the highest probabilities is what our
neural network thinks the input is.

Key takeaways

¢ In our simple neural network, we input some vector representations of our data to the
model, or our neural network, and ask it to do its magic and output some predictions
about what the input is.

Basic Architecture of a Neural Network

Forward Propogation:

Calculating Loss & Propagate backward

é}\ _ \//] Lpredttiom |

/ 7)) VS > LOS S /
, ——] pretlictm) EITVYS.
C/&%\iﬂ% F

hidden -
K(ﬁw) _ it
f_ZV\Fv«"b dees

Key Takeaway
After we do adjust the model, we start from the left again.

Repeating the process described above for some large number of times, our model will be

able to predict the results with more accuracy.

Terminology

e Forward Propagation: the process of going from input and prediction. During forward
propagation, we do some transformations/calculation with our input vectors.

e Loss: the quantified difference between our predictions and the target.

e Backward Propagation: the process of re-calculating and updating the parameters in
the model

Building the Model

Structure

¢ Propagation
e Optimization

import numpy as np
import matplotlib.pyplot as plt
import hS5py # Library to load dataset for our cats

This just downloads the dataset we're using
!wget https://github.com/rvarun7777/Deep Learning/raw/master/Neural%20Networks$
!wget https://github.com/rvarun7777/Deep Learning/raw/master/Neural%20Networks$

--2023-04-02 20:00:42-- https://github.com/rvarun7777/Deep Learning/raw/maste
r/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20a
s%20a%20Neural%20Network/datasets/test catvnoncat.h5

Resolving github.com (github.com)... 140.82.112.4
Connecting to github.com (github.com)|140.82.112.4|:443... connected.
HTTP request sent, awaiting response... 302 Found

Location: https://raw.githubusercontent.com/rvarun7777/Deep Learning/master/Neu
ral%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20as%20a%
20Neural%20Network/datasets/test catvnoncat.h5 [following]

--2023-04-02 20:00:42-- https://raw.githubusercontent.com/rvarun7777/Deep Lear
ning/master/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regre
ssion%20as%20a%20Neural%20Network/datasets/test_catvnoncat.h5

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.
133, 185.199.110.133, 185.199.109.133, ...

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.10

8.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 616958 (602K) [application/octet-stream]

Saving to: 'test_ catvnoncat.h5'

test catvnoncat.h5 100%] ===>] 602.50K --.-KB/s in 0.1s
2023-04-02 20:00:42 (5.70 MB/s) - 'test catvnoncat.h5' saved [616958/616958]
--2023-04-02 20:00:42-- https://github.com/rvarun7777/Deep Learning/raw/maste

r/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20a
s%20a%20Neural%20Network/datasets/train_catvnoncat.h5

Resolving github.com (github.com)... 140.82.112.4
Connecting to github.com (github.com)|140.82.112.4|:443... connected.
HTTP request sent, awaiting response... 302 Found

Location: https://raw.githubusercontent.com/rvarun7777/Deep Learning/master/Neu
ral%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20as%20a%
20Neural%20Network/datasets/train_catvnoncat.h5 [following]

--2023-04-02 20:00:43-- https://raw.githubusercontent.com/rvarun7777/Deep Lear
ning/master/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regre
ssion%20as%20a%20Neural%20Network/datasets/train catvnoncat.h5

Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.
133, 185.199.110.133, 185.199.109.133, ...

Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.10

8.133|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2572022 (2.5M) [application/octet-stream]

Saving to: 'train_catvnoncat.h5'

train_catvnoncat.h5 100%[===>] 2.45M 6.36MB/s in 0.4s

2023-04-02 20:00:43 (6.36 MB/s) - 'train catvnoncat.h5' saved [2572022/2572022]

Load dataset: Numpy version

device = "cpu

def load dataset _np():
train_dataset = h5py.File('train catvnoncat.h5','r")
#

train _set x orig = np.array(train_dataset["train set x"][:])
train _set y orig = np.array(train_dataset["train set y"][:])

test dataset = h5py.File("test catvnoncat.h5",'r")
test set x orig = np.array(test dataset["test set x"][:])
test set y orig = np.array(test dataset["test set y"][:])

classes = np.array(test dataset["list classes"][:])

train set y orig = train set y orig.reshape((l, train set y orig.shape[0]))
test set y orig = test set y orig.reshape((l, test set y orig.shape[0]))

return train set x orig, train set y orig, test set x orig, test set y orig

Loading the data (cat/non-cat)
train_set _x orig, train set y, test _set x orig, test set y, classes = load data

flatten train set and test set
train _set_x = train set x orig.reshape(-1,train set_x orig.shape[0])
test_set x = test_set x orig.reshape(-1,test_set x orig.shape[0])

standardize
train set x = (train_set x/255)
test_set x = test set x/255

Example of a picture

index = 25
plt.imshow(train set x orig[index])
print ("y ="

+ str(train_set_y[:, index]) + ", it's a

+ classes[np.squeeze(

y = [1l], it's a 'cat' picture.

Propagatioin

At each layer during forward propogation
X,nen: Input where m = number of inputs, n = input size.
Y. s1: Target

W..n, and b: weights where n = input size, k = output layer size

Step 1: Give a prediction
Prediction: Z = (W)T - X + b= (y},y5,- - ., yh) (Matrix multiplication)
Activation: A = o(Z) = (ay, as, . . ., a,) (We chose sigmoid act. function)
where n = input size. The dimension of A = dimemsion of X.

e Linear Combination!
Step 2: Calculates the loss
J = Y7 [y #log(a’) + (1 — y) log(1 — a’)]

Calculate the difference between the activations and the target through what's called the
loss function.

Step 3: Update the gradients

Use the Loss to update gradients, which in the optimazation step later on, will be used to
update weights

Difference = [(a' — y!),....,(a" —y")|=A-Y
W Ly X (A-Y)T

aw

dJ m dJ mo
b D D b o i (@' —)

Gradients Descent

e An optimiazation algorithm that allows us to get closer to the optimal prediction.

w

Gradient is the derivative of Loss with respect to weights, i.e. how does our loss

changes according the change in weights.

dJ me g)
%:%*21 (a’' —y*)
A

ImFlal . Gradient
Weight '
Incremental \

Step \

Derivative of Cost

>

Weight

Gradient descent allows us to lower cost through iterations of training.

Two common types of Gradient Descent

1. Stochastic Gradient Descent (SGD)
2. Mini-batch gradient descent (batch)

Let's Implement Forward propagation

- Load data

def propagate(w,b,X,Y)

FORWARD PROPAGATION (FROM X TO COST)
def propagate(w, b, X, Y):

X: n*m

Y: k'*m

W: n * output layer size

b: constant/number

m = X.shape[l] # m = number of inputs

z = np.dot(w.T, X) + b # Make Prediction

A =1/(1 + np.exp(-2)) # Activation to add non-linearity

cost = -1/m * np.sum(Y * np.log(A) + (1-Y)*np.log(l-A)) # cost function

BACKWARD PROPAGATION (TO FIND GRAD)
dw = 1/m * np.dot(X, (A-Y).T)
db = 1/m * np.sum(A-Y)

cost = np.squeeze(np.array(cost)) # do some dimension work

return cost and gradients
grads = {"dw": dw,
"db": db}

return grads, cost

Optimization

The goal of optimzation is to learn the "best" parameters W and b such that we can
minmize the loss function J.

def optimize(w, b, X, Y, epochs, learning_rate)
W : initial weights (usually some matrix of zeros or ones)
b: initial bias
Xpsm: inputs

Y.: target/label

a: learning rate
Formulas for updating the variables:
W=W —axdw

b=b—axdb

A
J(w) Initial

Learning rate

' Gradient

Global cost minimum
Jmin(w)

>

The learning rate defines how frequently the model will update its weights. The idea is that

we want the model to update the weight at such a frequency that it can reaches its optimal

performance.

o If the learning rate is too small, it might take thousands of years to train a model.

o |f the learning rate is too high, we are at risk of missing the global minimum(i.e.

overfitting)

Too low Just right Too high
| | |
1o 16 16)
| \ \
—_—
7] 6

A small learning rate The optimal learning Too lafge of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
before reaching the minimum point

minimum point

which lead to divergent
behaviors

import copy

def optimize(w, b, X, Y, num iterations=100, learning rate=0.009, print cost=Fa
W = copy.deepcopy (w)
b = copy.deepcopy(b)

costs = []

for i in range(num_ iterations):
grads,cost = propagate(w,b,X,Y)

Retrieve derivatives
dw = grads["dw"]
db = grads["db"]

update parameters
w = w - learning rate * dw
b = b - learning rate * db

Record the costs
if i % 100 == 0:
costs.append(cost)

Print the cost every 100 training iterations
if print cost:
print ("Cost after iteration %i: %f" %(i, cost))

params = {"w": w,
"b": b}

grads = {"dw": dw,
"db": db}

return params, grads, costs

Put pieces together

1. Initialize weights
2. Train the model with training dataset(propagation and optimization)
3. Make prediction on the test set

Prediction function:

if the predicted probability for an test sample is greater than 0.5, it is a cat. Otherwise, the
model thinks that it is not a cat.

Prediciton given test-set

def predict(w, b, X):
w,b: weights after training
X: test X dataset
m = X.shape[l]
Y prediction = np.zeros((l, m))

def

w = w.reshape(X.shape[0], 1)

#Make prediction:
A = 1/(1+ np.exp(-(np.dot(w.T,X)+b)))

for i in range(A.shape[l]):
if A[0,1]>0.5:

Y prediction[0,i] =1
else:
Y prediction[0,i] = 0

return Y prediction

model (X train, Y train, X test, Y test, num iterations=2000, learning rate=

#initialize weights
w,b = np.zeros((X train.shape[0],1)),0.0

train model with train data set
params,grads,costs = optimize(w,b,X train,Y train,num iterations,learning r
w,b = params['w'],params['b"']

make prediction

Y prediction test = predict(w,b,X test)

Y prediction train = predict(w,b,X train)
YOUR CODE ENDS HERE

Print train/test Errors

if print cost:
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y prediction_t
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y prediction_ te

d = {"costs": costs,
"Y prediction_ test": Y prediction_test,

"Y prediction train" : Y prediction train,
llwll : W,

llbll : b,

"learning rate" : learning rate,

"num iterations": num iterations}

return d

logistic_regression model = model(train set x, train set y, test set x, test_ se

Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost
Cost

after iteration 0: 0.693147

after iteration 100: 0.709726
after iteration 200: 0.657712
after iteration 300: 0.614611
after iteration 400: 0.578001
after iteration 500: 0.546372
after iteration 600: 0.518331
after iteration 700: 0.492852
after iteration 800: 0.469259
after iteration 900: 0.447139

train accuracy: 84.21052631578948 %

test

accuracy: 34.0 %

Plot learning curve (with costs)

costs = np.squeeze(logistic_regression model['costs'])

plt.plot(costs)

plt.ylabel('cost')

plt.xlabel('iterations (per hundreds)')

plt.title("Learning rate =" + str(logistic_regression_model["learning rate"]))
plt.show()

Learning rate =0.005

0.70 -

0.65 A

0.60 -

cost

0.55 A

0.50 A

0.45 A

0 2 4 6 a8
iterations (per hundreds)

---END of First lecture ---- See you next time~

Cat Classifier PyTorch Version

Import several PyTorch libraries
import torch

import torch.nn as nn

import torch.nn.functional as F
import torch.optim as optim

device = "cpu

def load _dataset():
train_dataset = h5py.File('train catvnoncat.h5','r')
#

train _set x orig = torch.tensor(train_dataset["train set x"][:])
train set y orig = torch.tensor(train dataset["train set y"][:])

test dataset = hbpy.File("test catvnoncat.h5",'r")
test set x orig = torch.tensor(test dataset["test set x"][:])
test set y orig = torch.tensor(test dataset["test set y"][:])

classes = np.array(test dataset["list classes"][:])

train set y orig = train set y orig.reshape((1l, train set y orig.shape[0]))
test set y orig = test set y orig.reshape((l, test set y orig.shape[0]))

return train set x orig, train set y orig, test set x orig, test set y orig

Loading the data (cat/non-cat)
train set x orig, train set y, test set x orig, test set y, classes = load data

flatten train set and test set
train set x = train set x orig.reshape(train set x orig.shape[0],-1)
test set x = test set x orig.reshape(test set x orig.shape[0],-1)

standardize
train set x = (train set x/255)
test set x = test set x/255

print(train_set_y.squeeze().shape)
print(train_set_x.shape)

torch.Size([209])
torch.Size([209, 12288])

Hyperparameters

train set x.shape == (209,12288)

input size = train set x.shape[l] # size of one image
num_epochs = 3000

learning rate = .001

hiddenl size = 128

hidden2 size = 64

class CatClassifier(nn.Module):
def init (self,input size,hiddenl size,hidden2 size):
super (CatClassifier,self). init ()
self.layerl = nn.Linear(input size,l)
self.activatel = nn.Sigmoid()

def forward(self,inputs):
output = self.layerl(inputs.float())
output = self.activatel (output)
return output

model = CatClassifier(input_size,hiddenl_size,hidden2_size)

criterion = nn.BCELoss()

Note: SGD performs better on image classification task than Adam.

SGD, stochastic gradient descent is precisely substrating weights * learning
optimizer = optim.SGD([p for p in model.parameters() if p.requires_grad], lr=le

losses [1
target = train set y.float().squeeze()

for epoch in range(num_epochs):

#output weights

outputs = model(train_set x).squeeze()
#calculate binary cross entropy loss
loss = criterion(outputs,target)
#Clear out gradients from previous epoch
optimizer.zero grad()

do backward propogation
loss.backward()

using SGD to do gradient descent
optimizer.step()
losses.append(loss.item())

plt.plot(losses)

[<matplotlib.lines.Line2D at 0x169034af0>]

0.65 A

0.60 ~

0.55 A

0.50

0.45 A

0.40 1

0.35 +

0.30 ~

T T T T T
0] 500 1000 1500 2000 2500

test size: 50 * 12288

labels = test_set_y.squeeze()

outputs = model(test_set x).squeeze()

predictions = torch.maximum(outputs,torch.ones(outputs.shape))
n_correct = (predictions==labels).sum().item()

accuracy = n_correct/50

print(f'accuracy: {(accuracy*100):.3}%")

accuracy: 66.0%

Some fun things you can do

e play around with https://playground.tensorflow.org
e Watch the neural network series by 3b1b

T
3000

https://playground.tensorflow.org/
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

e Explore this an interactive visualization of what we are trying to make

An Introduction to Pytorch

from matplotlib import pyplot as plt
import torch # you can't pytorch without importing it
torch.manual seed(0) # this is just to keep random things consistent for demo

<torch. C.Generator at 0x117050£10>

Tensor Operations

One thing you will be working with a lot is tensor. A tensor can be thought of as a high-
dimensional matrix (which itself could be though of as a higher dimensional vector).

Let's try making some vectors and matrices first.

v = torch.tensor([1l,2]) # you can create a vector this way
v, v.shape

(tensor([1l, 2]), torch.Size([2]))

A = torch.tensor([[2, 1], [3, 4]]) # now let's create a square matrix
B = torch.tensor([[-1, 4], [2, 0]]) # one more

print(A)

print(B)

tensor([[2, 1],

[3, 411)
tensor([[-1, 4],
[2, 011)

And we can do matrix operations on them

torch.matmul(A, v) # this is a matrix-vector multiplication!

tensor([4, 11])

torch.matmul (A, B)

tensor([[O, 8],
[5, 12]1])

A.T # this is how you take a transpose

tensor([[2, 3],
[1, 411)

torch.det (A.float()) # even take the determinant (doesn't work for int matrix,

tensor(5.)

https://adamharley.com/nn_vis/mlp/3d.html

A very powerful thing torch lets you do is tensor calculus. Let's create a random tensor with
gradient enabled.

x = torch.randn((2,3,4), requires grad = True) # track gradients
print (x.shape)
print(x)

torch.Size([2, 3, 4])

tensor([[[-1.1258, -1.1524, -0.2506, -0.4339],
[0.8487, 0.6920, -0.3160, -2.1152],
[0.4681, -0.1577, 1.4437, 0.2660]],

[[0.1665, 0.8744, -0.1435, -0.1116],
[0.9318, 1.2590, 2.0050, 0.0537],
[0.6181, -0.4128, -0.8411, -2.3160]]], requires_ grad=True)

Now, if we do a bunch of calculations based on the tensor... Notice we get a single tensor
that's the mean of w after all these business

y =x + 3.0
z = Yy*y

w = z.mean()
w

tensor(10.1019, grad fn=<MeanBackward0>)

Watch the magic as we call w.backward — it calculates the partial derivative of values in
the tensors that lead to the value of w and eventually goes back to x , which we said
requires_grad=True

w.backward ()
print(x.grad) # each element is Jdw/dx

tensor([[[0.1562, 0.1540, 0.2291, 0.2138],
[0.3207, 0.3077, 0.2237, 0.0737],
[0.2890, 0.2369, 0.3703, 0.2722]],

[[0.2639, 0.3229, 0.2380, 0.2407],
[0.3277, 0.3549, 0.4171, 0.2545],
[0.3015, 0.2156, 0.1799, 0.0570]1]1])

Another example that shows the partial derivative relation more clearly

x = torch.tensor([2.0, 6.0], requires grad = True) # track gradients
y = X**3

z = y.sum()

z.backward ()

x.grad

tensor([12., 108.1])

There are ways to stop torch from keeping track of gradient when you don't want it to.
Examples are as follows, but we won't go into detail right now

X.requires_grad_(False)
y = x.detach() + 2
with torch.no_grad():

y = x.detach() + 2

Some linear regression — optimizing one variable

we are trying to fit f(x) = 3 * x
X = torch.tensor([1l, 2, 3, 4, 5, 6], dtype=torch.float32)
Y torch.tensor([3.07, 5.93, 9.04, 11.97, 15.12, 17.89], dtype=torch.float32)

plt.scatter(X, Y) # looks linear enough!

<matplotlib.collections.PathCollection at 0x116e4ddf0>

18 ~ @

16

14 -

12 ~ ®

10 +

we try to learn this c¢ in f(x) = c * x
c = torch.tensor (0.0, dtype=torch.float32, requires_grad=True)

def predict(x):
return ¢ * X

Mean squared error
def calc_loss(y, y _hat):
return ((y_hat - y)**2).mean()

training params
learning rate = 0.01

n_iters = 100

for epoch in range(n_iters):

do prediction
y_hat = predict(X)

calculate loss
loss = calc loss(Y, y hat)

calculate partial derivatives
loss.backward()

optimize using those partial derivatives
with torch.no_grad():
¢ -= learning rate * c.grad

clear gradient (for next round)
c.grad.zero_()

if epoch % 10 == 0:
print (f'<epoch {epoch+1}> c = {c.item():.4f},

<epoch 1> ¢ = 0.9096, loss = 136.3765, f(5) prediction
<epoch 11>
<epoch 21>
<epoch 31>
<epoch 41>
<epoch 51>
<epoch 61>
<epoch 71>
<epoch 81>
<epoch 91>

= 2.9971, loss = 0.0065, f(5) prediction
= 2.9985, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction
= 2.9986, loss = 0.0064, f(5) prediction

Q0 aao0a0a0aa0an

examine the predictions
plt.scatter (X, Y) # original
with torch.no grad():

Y hat = [predict(x) for x in X]
plt.scatter (X, Y hat)

<matplotlib.collections.PathCollection at 0x16912dcl10>

loss = {loss.item():.4f},

= 2.9423, loss = 0.1053, f(5) prediction =

4.548
14.712
14.985
14.993
14.993
14.993
14.993
14.993
14.993
14.993

18 +

16 1

14 A

12 ~ @

10 4

MNIST Digit Classifier

—The Hello World of neural networks (...?)

import torch

import torch.nn as nn

import torchvision

import torchvision.transforms as transforms
import matplotlib.pyplot as plt

import torch.nn.functional as F

from tgdm.notebook import tgdm

this lets us use GPU, if one is available
if torch.cuda.is_available():
device = torch.device('"cuda:0")
print("Running on gpu")
this is Apple's GPU, if there exists one
elif torch.backends.mps.is available():
device = torch.device("mps")
print("Running on mps")
Otherwise CPU, which will be much slower
else:
device = torch.device('"cpu")
print("Running on cpu")

Running on mps

constants. don't touch or things may break
input_size = 784 # (28 * 28) images

num classes = 10

hyperparams. You can play around with these
hiddenl size = 256
hidden2 size = 64

num_epochs = 10

batch size = 128

learning rate = .0001

train dataset = torchvision.datasets.MNIST(root = './data', train = True, trans
test dataset = torchvision.datasets.MNIST(root = './data', train = False, trans

train loader = torch.utils.data.Dataloader(dataset = train dataset, batch_size
test loader = torch.utils.data.Dataloader(dataset = test dataset, batch size =

samples, labels = next(iter(train loader))
print (samples.shape, labels.shape)

for i in range(8):
plt.subplot(2,4,i+1)
plt.imshow(samples[i][0], cmap='gray')
plt.show()

torch.Size([128, 1, 28, 28]) torch.Size([128])

0 0 0
20 0 o

0] 20 0 20

A

20 0] 20

]
0
0]
]
]

class NeuralNet (nn.Module):
def init (self, input size, num classes, hiddenl size, hidden2 size):
super (NeuralNet, self). init ()

self.network = nn.Sequential(
nn.Linear (input_size, hiddenl size),
nn.ReLU(),
nn.Linear (hiddenl size, hidden2 size),
nn.ReLU(),
nn.Linear (hidden2 size, num classes),
nn.Sigmoid()

def forward(self, x):
return self.network(x)

model = NeuralNet(input size, num classes, hiddenl size, hidden2 size).to(devic

loss_fn = nn.CrossEntropyLoss ()
optimiser = torch.optim.Adam(model.parameters(), lr = learning rate)
losses = []

n_total steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_ loader):
images = images.reshape(-1, 28%*28).to(device)
labels = labels.to(device)

outputs = model (images)
loss = loss_fn(outputs, labels)

optimiser.zero grad()
loss.backward()
optimiser.step()

if (i + 1) & 100 ==
print (f'epoch = [{epoch+1l}/{num epochs}], step = [{i+1}/{n_total s
losses.append(loss.item())

epoch = [1/10],
epoch = [1/10],
epoch = [1/10],
epoch = [1/10],
epoch = [2/10],
epoch = [2/10],
epoch = [2/10],
epoch = [2/10],
epoch = [3/10],
epoch = [3/10],
epoch = [3/10],
epoch = [3/10],
epoch = [4/10],
epoch = [4/10],
epoch = [4/10],
epoch = [4/10],
epoch = [5/10],
epoch = [5/10],
epoch = [5/10],
epoch = [5/10],
epoch = [6/10],
epoch = [6/10],
epoch = [6/10],
epoch = [6/10],
epoch = [7/10],
epoch = [7/10],
epoch = [7/10],
epoch = [7/10],
epoch = [8/10],
epoch = [8/10],
epoch = [8/10],
epoch = [8/10],
epoch = [9/10],
epoch = [9/10],
epoch = [9/10],
epoch = [9/10],

step
step
step

step =

step
step

step =

step
step

step =
step =

step
step
step
step
step
step
step
step
step
step

step =
step =

step
step

step =

step
step

step =

step
step

step =

step
step

step =

step =

[100/46917,
[200/4697,
[300/4697,
[400/4697,
[100/4697,
[200/4697,
[300/4697,
[400/46917,
[100/4697,
[200/46917,
[300/4697],
[400/469],
[100/4697,
[200/469],
[300/4697,
[400/469]7,
[100/4697,
[200/4697,
[300/4697,
[400/4697,
[100/4697,
[200/4697,
[300/4697],
[400/469],
[100/469],
[200/469],
[300/4697,
[400/4697,
[100/4697,
[200/46917,
[300/46917,
[400/4697,
[100/46917,
[200/4697,
[300/4697,
[400/46917,

epoch = [10/10], step = [100/469],

epoch = [10/10],
epoch = [10/10],
epoch = [10/10],

plt.plot(losses)

step
step
step

[200/4697,
[300/4697,
[400/4697,

loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss
loss

2.124385118484497
1.855729579925537
1.757800817489624
1.6989238262176514
1.646148920059204
1.654342532157898
1.5765453577041626
1.6063997745513916
1.6199983358383179
1.5985586643218994
1.5651957988739014
1.5614111423492432
1.5597553253173828
1.5576527118682861
1.5752973556518555
1.5659799575805664
1.5647411346435547
1.5742769241333008
1.5521223545074463
1.5499091148376465
1.5868661403656006
1.5591518878936768
1.5384305715560913
1.5775145292282104
1.520632028579712
1.5483708381652832
1.5502614974975586
1.5184895992279053
1.5154091119766235
1.5130215883255005
1.5256640911102295
1.5348907709121704
1.5189883708953857
1.5316388607025146
1.5024809837341309
1.527031421661377
1.5116820335388184
1.509131669998169
1.5189975500106812
1.526064395904541

[<matplotlib.lines.Line2D at 0xlé6c4e3cal>]

1.650 A

1.625 ~

1.600 A

1.575 ~

1.550 ~

1.525 ~

1.500

with torch.no grad():
n _correct = 0

n _samples = 0

for images, labels in test loader:
images = images.reshape(-1, 28%28).to(device)
labels = labels.to(device)

outputs = model (images)

_, predictions = torch.max(outputs, 1)

n_samples += len(labels)

n_correct += (predictions == labels).sum().item()
accuracy = n_correct / n_samples
print(f'{(accuracy*100):.3}%")

94.0%

What to do next

More fun things to look at

e CNN on MNIST visualized

e https://poloclub.github.io/cnn-explainer/
e RNN..? Maybe too complicated

o Different activation functions

MNIST Classifier, CNN version

https://adamharley.com/nn_vis/cnn/3d.html
https://poloclub.github.io/cnn-explainer/

if time, else take home

