
Defining the Problem — Machine Learning

How do we make machine learn to do something without explicitely programming it to do

that thing?

Example tasks:

Identify if image contains a cat

Classify handwritten characters

Generate music

Play go

Translation

Write an essay (not for submission of course)

...

We could programme a computer to do these thigns, but it gets harder the less we know

how to write such programme. (Imagine someone asking you to handcraft a translator)

Consider this trivial task:

We have four-pixel images, and we want to classify them as 1, 7, or L.

Left to right: 7, L, 1, 1

Okay, maybe you wrote a bunch of if else statements and got something to work

What if... new language with other ways of writing 1, 7, L—

Left to right: 7, L, 1, 1

...That just broke our programme

Ideas:

Decision tree?

Neural network!

Overview of Neural Network

Intuition for understanding neural network: it resembles how neurons in our brain are

connected

Input: some representations of our data

Output: some predictions based on the input data

Question to ask:

How can we communicate our goal with the machine?

How does these neural nodes or layers transmit information from one to the other?

How does it make predictions and adjust its predictions?

Consider the image below. How do we represent an image so that machine can understand

it?

We can represent this 6 as some vector/matrix consisted of 0 and 1.

What if my picture has shadows?

We can then represent this 8 by some matrix/vector with the rgb values at each pixel

How can we know which output it generates?

One common way is to use probability. The output with the highest probabilities is what our

neural network thinks the input is.

Key takeaways

In our simple neural network, we input some vector representations of our data to the

model, or our neural network, and ask it to do its magic and output some predictions

about what the input is.

Basic Architecture of a Neural Network
Forward Propogation:

Calculating Loss & Propagate backward

Key Takeaway

After we do adjust the model, we start from the left again.

Repeating the process described above for some large number of times, our model will be

able to predict the results with more accuracy.

Terminology

Forward Propagation: the process of going from input and prediction. During forward

propagation, we do some transformations/calculation with our input vectors.

Loss: the quantified difference between our predictions and the target.

Backward Propagation: the process of re-calculating and updating the parameters in

the model

Building the Model

Structure

Propagation

Optimization

In []: import numpy as np
import matplotlib.pyplot as plt
import h5py # Library to load dataset for our cats

In []: # This just downloads the dataset we're using
!wget https://github.com/rvarun7777/Deep_Learning/raw/master/Neural%20Networks%
!wget https://github.com/rvarun7777/Deep_Learning/raw/master/Neural%20Networks%

--2023-04-02 20:00:42-- https://github.com/rvarun7777/Deep_Learning/raw/maste
r/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20a
s%20a%20Neural%20Network/datasets/test_catvnoncat.h5
Resolving github.com (github.com)... 140.82.112.4
Connecting to github.com (github.com)|140.82.112.4|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://raw.githubusercontent.com/rvarun7777/Deep_Learning/master/Neu
ral%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20as%20a%
20Neural%20Network/datasets/test_catvnoncat.h5 [following]
--2023-04-02 20:00:42-- https://raw.githubusercontent.com/rvarun7777/Deep_Lear
ning/master/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regre
ssion%20as%20a%20Neural%20Network/datasets/test_catvnoncat.h5
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.
133, 185.199.110.133, 185.199.109.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.10
8.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 616958 (602K) [application/octet-stream]
Saving to: 'test_catvnoncat.h5'

test_catvnoncat.h5 100%[===================>] 602.50K --.-KB/s in 0.1s

2023-04-02 20:00:42 (5.70 MB/s) - 'test_catvnoncat.h5' saved [616958/616958]

--2023-04-02 20:00:42-- https://github.com/rvarun7777/Deep_Learning/raw/maste
r/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20a
s%20a%20Neural%20Network/datasets/train_catvnoncat.h5
Resolving github.com (github.com)... 140.82.112.4
Connecting to github.com (github.com)|140.82.112.4|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://raw.githubusercontent.com/rvarun7777/Deep_Learning/master/Neu
ral%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regression%20as%20a%
20Neural%20Network/datasets/train_catvnoncat.h5 [following]
--2023-04-02 20:00:43-- https://raw.githubusercontent.com/rvarun7777/Deep_Lear
ning/master/Neural%20Networks%20and%20Deep%20Learning/Week%202/Logistic%20Regre
ssion%20as%20a%20Neural%20Network/datasets/train_catvnoncat.h5
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.
133, 185.199.110.133, 185.199.109.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.10
8.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2572022 (2.5M) [application/octet-stream]
Saving to: 'train_catvnoncat.h5'

train_catvnoncat.h5 100%[===================>] 2.45M 6.36MB/s in 0.4s

2023-04-02 20:00:43 (6.36 MB/s) - 'train_catvnoncat.h5' saved [2572022/2572022]

In []: # Load dataset: Numpy version

device = "cpu"

def load_dataset_np():
 train_dataset = h5py.File('train_catvnoncat.h5','r')
 #
 train_set_x_orig = np.array(train_dataset["train_set_x"][:])
 train_set_y_orig = np.array(train_dataset["train_set_y"][:])

y = [1], it's a 'cat' picture.

Propagatioin

 test_dataset = h5py.File("test_catvnoncat.h5",'r')
 test_set_x_orig = np.array(test_dataset["test_set_x"][:])
 test_set_y_orig = np.array(test_dataset["test_set_y"][:])

 classes = np.array(test_dataset["list_classes"][:])

 train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
 test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

 return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig

Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_data

flatten train set and test set
train_set_x = train_set_x_orig.reshape(-1,train_set_x_orig.shape[0])
test_set_x = test_set_x_orig.reshape(-1,test_set_x_orig.shape[0])

standardize
train_set_x = (train_set_x/255)
test_set_x = test_set_x/255

In []: # Example of a picture
index = 25
plt.imshow(train_set_x_orig[index])
print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(

At each layer during forward propogation

: Input where m = number of inputs, n = input size.

: Target

 and : weights where n = input size, k = output layer size

Step 1: Give a prediction

Prediction: (Matrix multiplication)

Activation: (We chose sigmoid act. function)

where input size. The dimension of A = dimemsion of X.

Linear Combination!

Step 2: Calculates the loss

Calculate the difference between the activations and the target through what's called the

loss function.

Step 3: Update the gradients

Use the Loss to update gradients, which in the optimazation step later on, will be used to

update weights

Difference

Gradients Descent
An optimiazation algorithm that allows us to get closer to the optimal prediction.

Xm∗n

Ym∗1

Wk∗n b

Z = (W)T ⋅ X + b = (y′
1, y′

2, . . . , y′
n)

A = σ(Z) = (a1, a2, . . . , an)

n =

J = ∑
m

1 [yi ∗ log(ai) + (1 − yi) log(1 − ai)]

= [(a1 − y1), , (an − yn)] = A − Y

= ∗∑
m

i=1 X ∗ (A − Y)T
dJ

dW
1
m

= ∗∑
m

i=1 = ∗∑
m

i=1(ai − yi)dJ

db
1
m

dJ

dbi
1
m

Gradient is the derivative of Loss with respect to weights, i.e. how does our loss

changes according the change in weights.

Gradient descent allows us to lower cost through iterations of training.

= ∗ X(A − Y)dJ

dw
1
m

= ∗∑
m

1 (ai − yi)dJ

db
1
m

Two common types of Gradient Descent

1. Stochastic Gradient Descent (SGD)

2. Mini-batch gradient descent (batch)

Let's Implement Forward propagation

- Load data

def propagate(w,b,X,Y)

Optimization

The goal of optimzation is to learn the "best" parameters and such that we can

minmize the loss function .

def optimize(w, b, X, Y, epochs, learning_rate)

: initial weights (usually some matrix of zeros or ones)

: initial bias

: inputs

: target/label

In []: # FORWARD PROPAGATION (FROM X TO COST)
def propagate(w, b, X, Y):
 # X: n*m
 # Y: k'*m
 # W: n * output_layer_size
 # b: constant/number
 m = X.shape[1] # m = number of inputs
 z = np.dot(w.T, X) + b # Make Prediction
 A = 1/(1 + np.exp(-z)) # Activation to add non-linearity
 cost = -1/m * np.sum(Y * np.log(A) + (1-Y)*np.log(1-A)) # cost function

 # BACKWARD PROPAGATION (TO FIND GRAD)
 dw = 1/m * np.dot(X,(A-Y).T)
 db = 1/m * np.sum(A-Y)

 cost = np.squeeze(np.array(cost)) # do some dimension work

 # return cost and gradients
 grads = {"dw": dw,
 "db": db}

 return grads, cost

W b

J

W

b

Xn∗m

Ym

: learning rate

Formulas for updating the variables:

Learning rate

The learning rate defines how frequently the model will update its weights. The idea is that

we want the model to update the weight at such a frequency that it can reaches its optimal

performance.

If the learning rate is too small, it might take thousands of years to train a model.

If the learning rate is too high, we are at risk of missing the global minimum(i.e.

overfitting)

α

W = W − α ∗ dw

b = b − α ∗ db

Put pieces together

1. Initialize weights

2. Train the model with training dataset(propagation and optimization)

3. Make prediction on the test set

Prediction function:

if the predicted probability for an test sample is greater than 0.5, it is a cat. Otherwise, the

model thinks that it is not a cat.

In []: import copy

def optimize(w, b, X, Y, num_iterations=100, learning_rate=0.009, print_cost=Fa
 w = copy.deepcopy(w)
 b = copy.deepcopy(b)

 costs = []

 for i in range(num_iterations):
 grads,cost = propagate(w,b,X,Y)

 # Retrieve derivatives
 dw = grads["dw"]
 db = grads["db"]

 # update parameters
 w = w - learning_rate * dw
 b = b - learning_rate * db

 # Record the costs
 if i % 100 == 0:
 costs.append(cost)

 # Print the cost every 100 training iterations
 if print_cost:
 print ("Cost after iteration %i: %f" %(i, cost))

 params = {"w": w,
 "b": b}

 grads = {"dw": dw,
 "db": db}

 return params, grads, costs

In []: # Prediciton given test-set

def predict(w, b, X):
 # w,b: weights after training
 # X: test_X_dataset
 m = X.shape[1]
 Y_prediction = np.zeros((1, m))

Cost after iteration 0: 0.693147
Cost after iteration 100: 0.709726
Cost after iteration 200: 0.657712
Cost after iteration 300: 0.614611
Cost after iteration 400: 0.578001
Cost after iteration 500: 0.546372
Cost after iteration 600: 0.518331
Cost after iteration 700: 0.492852
Cost after iteration 800: 0.469259
Cost after iteration 900: 0.447139
train accuracy: 84.21052631578948 %
test accuracy: 34.0 %

 w = w.reshape(X.shape[0], 1)

 #Make prediction:
 A = 1/(1+ np.exp(-(np.dot(w.T,X)+b)))

 for i in range(A.shape[1]):
 if A[0,i]>0.5:
 Y_prediction[0,i] = 1
 else:
 Y_prediction[0,i] = 0

 return Y_prediction

In []: def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=

 #initialize weights
 w,b = np.zeros((X_train.shape[0],1)),0.0

 # train model with train data set
 params,grads,costs = optimize(w,b,X_train,Y_train,num_iterations,learning_r
 w,b = params['w'],params['b']

 # make prediction
 Y_prediction_test = predict(w,b,X_test)
 Y_prediction_train = predict(w,b,X_train)
 # YOUR CODE ENDS HERE

 # Print train/test Errors
 if print_cost:
 print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_t
 print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_te

 d = {"costs": costs,
 "Y_prediction_test": Y_prediction_test,
 "Y_prediction_train" : Y_prediction_train,
 "w" : w,
 "b" : b,
 "learning_rate" : learning_rate,
 "num_iterations": num_iterations}

 return d

In []: logistic_regression_model = model(train_set_x, train_set_y, test_set_x, test_se

---END of First lecture ---- See you next time~

Cat Classifier PyTorch Version

In []: # Plot learning curve (with costs)
costs = np.squeeze(logistic_regression_model['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(logistic_regression_model["learning_rate"]))
plt.show()

In []: # Import several PyTorch libraries
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

In []: device = "cpu"

def load_dataset():
 train_dataset = h5py.File('train_catvnoncat.h5','r')
 #
 train_set_x_orig = torch.tensor(train_dataset["train_set_x"][:])
 train_set_y_orig = torch.tensor(train_dataset["train_set_y"][:])

torch.Size([209])
torch.Size([209, 12288])

 test_dataset = h5py.File("test_catvnoncat.h5",'r')
 test_set_x_orig = torch.tensor(test_dataset["test_set_x"][:])
 test_set_y_orig = torch.tensor(test_dataset["test_set_y"][:])

 classes = np.array(test_dataset["list_classes"][:])

 train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
 test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))

 return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig

In []: # Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_data

flatten train set and test set
train_set_x = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1)
test_set_x = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1)

standardize
train_set_x = (train_set_x/255)
test_set_x = test_set_x/255

print(train_set_y.squeeze().shape)
print(train_set_x.shape)

In []: # Hyperparameters

train_set_x.shape == (209,12288)
input_size = train_set_x.shape[1] # size of one image
num_epochs = 3000
learning_rate = .001
hidden1_size = 128
hidden2_size = 64

In []: class CatClassifier(nn.Module):
 def __init__(self,input_size,hidden1_size,hidden2_size):
 super(CatClassifier,self).__init__()
 self.layer1 = nn.Linear(input_size,1)
 self.activate1 = nn.Sigmoid()

 def forward(self,inputs):
 output = self.layer1(inputs.float())
 output = self.activate1(output)
 return output

model = CatClassifier(input_size,hidden1_size,hidden2_size)
criterion = nn.BCELoss()
Note: SGD performs better on image classification task than Adam.
SGD, stochastic gradient descent is precisely substrating weights * learning
optimizer = optim.SGD([p for p in model.parameters() if p.requires_grad], lr=le

In []: losses = []
target = train_set_y.float().squeeze()

for epoch in range(num_epochs):

[<matplotlib.lines.Line2D at 0x169034af0>]

accuracy: 66.0%

Some fun things you can do
play around with https://playground.tensorflow.org

Watch the neural network series by 3b1b

 #output weights
 outputs = model(train_set_x).squeeze()
 #calculate binary cross entropy loss
 loss = criterion(outputs,target)
 #Clear out gradients from previous epoch
 optimizer.zero_grad()
 # do backward propogation
 loss.backward()
 # using SGD to do gradient descent
 optimizer.step()
 losses.append(loss.item())

In []: plt.plot(losses)

Out[]:

In []: # test size: 50 * 12288
labels = test_set_y.squeeze()
outputs = model(test_set_x).squeeze()
predictions = torch.maximum(outputs,torch.ones(outputs.shape))
n_correct = (predictions==labels).sum().item()
accuracy = n_correct/50
print(f'accuracy: {(accuracy*100):.3}%')

https://playground.tensorflow.org/
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Explore this an interactive visualization of what we are trying to make

An Introduction to Pytorch

<torch._C.Generator at 0x117050f10>

Tensor Operations

One thing you will be working with a lot is tensor. A tensor can be thought of as a high-

dimensional matrix (which itself could be though of as a higher dimensional vector).

Let's try making some vectors and matrices first.

(tensor([1, 2]), torch.Size([2]))

tensor([[2, 1],
 [3, 4]])
tensor([[-1, 4],
 [2, 0]])

And we can do matrix operations on them

tensor([4, 11])

tensor([[0, 8],
 [5, 12]])

tensor([[2, 3],
 [1, 4]])

tensor(5.)

In []: from matplotlib import pyplot as plt
import torch # you can't pytorch without importing it
torch.manual_seed(0) # this is just to keep random things consistent for demo

Out[]:

In []: v = torch.tensor([1,2]) # you can create a vector this way
v, v.shape

Out[]:

In []: A = torch.tensor([[2, 1], [3, 4]]) # now let's create a square matrix
B = torch.tensor([[-1, 4], [2, 0]]) # one more
print(A)
print(B)

In []: torch.matmul(A, v) # this is a matrix-vector multiplication!

Out[]:

In []: torch.matmul(A, B)

Out[]:

In []: A.T # this is how you take a transpose

Out[]:

In []: torch.det(A.float()) # even take the determinant (doesn't work for int matrix,

Out[]:

https://adamharley.com/nn_vis/mlp/3d.html

A very powerful thing torch lets you do is tensor calculus. Let's create a random tensor with

gradient enabled.

torch.Size([2, 3, 4])
tensor([[[-1.1258, -1.1524, -0.2506, -0.4339],
 [0.8487, 0.6920, -0.3160, -2.1152],
 [0.4681, -0.1577, 1.4437, 0.2660]],

 [[0.1665, 0.8744, -0.1435, -0.1116],
 [0.9318, 1.2590, 2.0050, 0.0537],
 [0.6181, -0.4128, -0.8411, -2.3160]]], requires_grad=True)

Now, if we do a bunch of calculations based on the tensor... Notice we get a single tensor

that's the mean of w after all these business

tensor(10.1019, grad_fn=<MeanBackward0>)

Watch the magic as we call w.backward — it calculates the partial derivative of values in

the tensors that lead to the value of w and eventually goes back to x , which we said

requires_grad=True

tensor([[[0.1562, 0.1540, 0.2291, 0.2138],
 [0.3207, 0.3077, 0.2237, 0.0737],
 [0.2890, 0.2369, 0.3703, 0.2722]],

 [[0.2639, 0.3229, 0.2380, 0.2407],
 [0.3277, 0.3549, 0.4171, 0.2545],
 [0.3015, 0.2156, 0.1799, 0.0570]]])

Another example that shows the partial derivative relation more clearly

tensor([12., 108.])

There are ways to stop torch from keeping track of gradient when you don't want it to.

Examples are as follows, but we won't go into detail right now

In []: x = torch.randn((2,3,4), requires_grad = True) # track gradients
print(x.shape)
print(x)

In []: y = x + 3.0
z = y*y
w = z.mean()
w

Out[]:

In []: w.backward()
print(x.grad) # each element is ∂w/∂x

In []: x = torch.tensor([2.0, 6.0], requires_grad = True) # track gradients
y = x**3
z = y.sum()
z.backward()
x.grad

Out[]:

x.requires_grad_(False)
y = x.detach() + 2
with torch.no_grad():
 y = x.detach() + 2

Some linear regression — optimizing one variable

<matplotlib.collections.PathCollection at 0x116e4ddf0>

In []: # we are trying to fit f(x) = 3 * x
X = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.float32)
Y = torch.tensor([3.07, 5.93, 9.04, 11.97, 15.12, 17.89], dtype=torch.float32)

In []: plt.scatter(X, Y) # looks linear enough!

Out[]:

In []: # we try to learn this c in f(x) = c * x
c = torch.tensor(0.0, dtype=torch.float32, requires_grad=True)

def predict(x):
 return c * x

Mean squared error
def calc_loss(y, y_hat):
 return ((y_hat - y)**2).mean()

training params
learning_rate = 0.01
n_iters = 100

for epoch in range(n_iters):

<epoch 1> c = 0.9096, loss = 136.3765, f(5) prediction = 4.548
<epoch 11> c = 2.9423, loss = 0.1053, f(5) prediction = 14.712
<epoch 21> c = 2.9971, loss = 0.0065, f(5) prediction = 14.985
<epoch 31> c = 2.9985, loss = 0.0064, f(5) prediction = 14.993
<epoch 41> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993
<epoch 51> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993
<epoch 61> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993
<epoch 71> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993
<epoch 81> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993
<epoch 91> c = 2.9986, loss = 0.0064, f(5) prediction = 14.993

<matplotlib.collections.PathCollection at 0x16912dc10>

 # do prediction
 y_hat = predict(X)

 # calculate loss
 loss = calc_loss(Y, y_hat)

 # calculate partial derivatives
 loss.backward()

 # optimize using those partial derivatives
 with torch.no_grad():
 c -= learning_rate * c.grad

 # clear gradient (for next round)
 c.grad.zero_()

 if epoch % 10 == 0:
 print(f'<epoch {epoch+1}> c = {c.item():.4f}, loss = {loss.item():.4f},

In []: # examine the predictions
plt.scatter(X, Y) # original
with torch.no_grad():
 Y_hat = [predict(x) for x in X]
plt.scatter(X, Y_hat)

Out[]:

MNIST Digit Classifier

—The Hello World of neural networks (...?)

Running on mps

In []: import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import torch.nn.functional as F
from tqdm.notebook import tqdm

In []: # this lets us use GPU, if one is available
if torch.cuda.is_available():
 device = torch.device("cuda:0")
 print("Running on gpu")
this is Apple's GPU, if there exists one
elif torch.backends.mps.is_available():
 device = torch.device("mps")
 print("Running on mps")
Otherwise CPU, which will be much slower
else:
 device = torch.device("cpu")
 print("Running on cpu")

In []: # constants. don't touch or things may break
input_size = 784 # (28 * 28) images

torch.Size([128, 1, 28, 28]) torch.Size([128])

num_classes = 10

hyperparams. You can play around with these
hidden1_size = 256
hidden2_size = 64
num_epochs = 10
batch_size = 128
learning_rate = .0001

In []: train_dataset = torchvision.datasets.MNIST(root = './data', train = True, trans
test_dataset = torchvision.datasets.MNIST(root = './data', train = False, trans

In []: train_loader = torch.utils.data.DataLoader(dataset = train_dataset, batch_size
test_loader = torch.utils.data.DataLoader(dataset = test_dataset, batch_size =

In []: samples, labels = next(iter(train_loader))
print(samples.shape, labels.shape)

for i in range(8):
 plt.subplot(2,4,i+1)
 plt.imshow(samples[i][0], cmap='gray')
plt.show()

In []: class NeuralNet(nn.Module):
 def __init__(self, input_size, num_classes, hidden1_size, hidden2_size):
 super(NeuralNet, self).__init__()

 self.network = nn.Sequential(
 nn.Linear(input_size, hidden1_size),
 nn.ReLU(),
 nn.Linear(hidden1_size, hidden2_size),
 nn.ReLU(),
 nn.Linear(hidden2_size, num_classes),
 nn.Sigmoid()

)

 def forward(self, x):
 return self.network(x)

In []: model = NeuralNet(input_size, num_classes, hidden1_size, hidden2_size).to(devic

In []: loss_fn = nn.CrossEntropyLoss()
optimiser = torch.optim.Adam(model.parameters(), lr = learning_rate)
losses = []

In []: n_total_steps = len(train_loader)
for epoch in range(num_epochs):
 for i, (images, labels) in enumerate(train_loader):
 images = images.reshape(-1, 28*28).to(device)
 labels = labels.to(device)

 outputs = model(images)
 loss = loss_fn(outputs, labels)

 optimiser.zero_grad()
 loss.backward()
 optimiser.step()

 if (i + 1) % 100 == 0:
 print (f'epoch = [{epoch+1}/{num_epochs}], step = [{i+1}/{n_total_s
 losses.append(loss.item())

epoch = [1/10], step = [100/469], loss = 2.124385118484497
epoch = [1/10], step = [200/469], loss = 1.855729579925537
epoch = [1/10], step = [300/469], loss = 1.757800817489624
epoch = [1/10], step = [400/469], loss = 1.6989238262176514
epoch = [2/10], step = [100/469], loss = 1.646148920059204
epoch = [2/10], step = [200/469], loss = 1.654342532157898
epoch = [2/10], step = [300/469], loss = 1.5765453577041626
epoch = [2/10], step = [400/469], loss = 1.6063997745513916
epoch = [3/10], step = [100/469], loss = 1.6199983358383179
epoch = [3/10], step = [200/469], loss = 1.5985586643218994
epoch = [3/10], step = [300/469], loss = 1.5651957988739014
epoch = [3/10], step = [400/469], loss = 1.5614111423492432
epoch = [4/10], step = [100/469], loss = 1.5597553253173828
epoch = [4/10], step = [200/469], loss = 1.5576527118682861
epoch = [4/10], step = [300/469], loss = 1.5752973556518555
epoch = [4/10], step = [400/469], loss = 1.5659799575805664
epoch = [5/10], step = [100/469], loss = 1.5647411346435547
epoch = [5/10], step = [200/469], loss = 1.5742769241333008
epoch = [5/10], step = [300/469], loss = 1.5521223545074463
epoch = [5/10], step = [400/469], loss = 1.5499091148376465
epoch = [6/10], step = [100/469], loss = 1.5868661403656006
epoch = [6/10], step = [200/469], loss = 1.5591518878936768
epoch = [6/10], step = [300/469], loss = 1.5384305715560913
epoch = [6/10], step = [400/469], loss = 1.5775145292282104
epoch = [7/10], step = [100/469], loss = 1.520632028579712
epoch = [7/10], step = [200/469], loss = 1.5483708381652832
epoch = [7/10], step = [300/469], loss = 1.5502614974975586
epoch = [7/10], step = [400/469], loss = 1.5184895992279053
epoch = [8/10], step = [100/469], loss = 1.5154091119766235
epoch = [8/10], step = [200/469], loss = 1.5130215883255005
epoch = [8/10], step = [300/469], loss = 1.5256640911102295
epoch = [8/10], step = [400/469], loss = 1.5348907709121704
epoch = [9/10], step = [100/469], loss = 1.5189883708953857
epoch = [9/10], step = [200/469], loss = 1.5316388607025146
epoch = [9/10], step = [300/469], loss = 1.5024809837341309
epoch = [9/10], step = [400/469], loss = 1.527031421661377
epoch = [10/10], step = [100/469], loss = 1.5116820335388184
epoch = [10/10], step = [200/469], loss = 1.509131669998169
epoch = [10/10], step = [300/469], loss = 1.5189975500106812
epoch = [10/10], step = [400/469], loss = 1.526064395904541

[<matplotlib.lines.Line2D at 0x16c4e3ca0>]

In []: plt.plot(losses)

Out[]:

94.0%

What to do next
More fun things to look at

CNN on MNIST visualized

https://poloclub.github.io/cnn-explainer/

RNN..? Maybe too complicated

Different activation functions

MNIST Classifier, CNN version

In []: with torch.no_grad():
 n_correct = 0
 n_samples = 0
 for images, labels in test_loader:
 images = images.reshape(-1, 28*28).to(device)
 labels = labels.to(device)
 outputs = model(images)

 _, predictions = torch.max(outputs, 1)
 n_samples += len(labels)
 n_correct += (predictions == labels).sum().item()
 accuracy = n_correct / n_samples
 print(f'{(accuracy*100):.3}%')

https://adamharley.com/nn_vis/cnn/3d.html
https://poloclub.github.io/cnn-explainer/

if time, else take home

